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SUMMARY

A method for flight flutter testing is proposed
which enables one to determine the flutter dynamic
pressure from flights flown far below the flutter dy-
namic pressure. The method is based on the identi-
fication of the coefficients of the equations of motion
at low dynamic pressures, followed by the solution of
these equations to compute the flutter dynamic pres-
sure. The initial results of simulated data reported
in the present work indicate that the method can ac-
curately predict the flutter dynamic pressure, as de-
scribed. If no insurmountable difficulties arise in the
implementation of this method, it may significantly
improve the procedures for flight flutter testing.

INTRODUCTION

The current procedures involving flight flutter
testing are essentially based on the experimental de-
termination of the modal damping coefficients and on
the study of the variation of these coefficients with
airspeed (Ruhlin and others, 1982; Russo and others,
1983; Roy and Walker, 1985). The flutter phenomenon
involves an aeroelastic structural instability which may
be violent in nature (explosive flutter), and, therefore,
it may exhibit a rapid deterioration in modal damp-
ings with speed increase. Therefore, a careful opening
of the flight envelope is required to avoid a possible
loss of the vehicle during these tests. As a result, a
large number of flight tests are performed, involving a
carcful increase in flight speeds. These flight tests are
both time consuming and costly; and they require fly-
ing at speeds that are close to the flutter speeds. Ruh-
lin and others (1982) say that for a reliable determi-
nation of flutter speed, flight flutter tests must be per-
formed at dynamic pressures with values around 7 to
10 percent below the flutter dynamic pressure. There-
fore, it is important to formulate a method that will
permit a rapid and reliable determination of the flutter
speed at speeds well below the flutter speed. Attempts
to formulate such a method were made in the past by
several investigators. Zimmerman and Weissenburger
(1964) describe a method whereby the complex ci gen-
values of the vehicle are determined at three different
airspeeds. These eigenvalues are then used to derive
the vehicle’s characteristic equation at these three air-
speeds. The coefficients of the characteristic equations

are then used to evaluate the Routh-Hurwitz stability
discriminants. Zimmerman and Weissenburger (1964)
show that for binary systems, the Routh-Hurwitz sta-
bility discriminant varies in a quadratic fashion with
the dynamic pressure. Hence, the complete parabolic
shape can be determined from measurements at three
different airspeeds, which can all be far below the crit-
ical flutter speed. Unfortunately, this method does not
seem to work with systems that have more than 2 de-
grees of freedom.

A variation on the aforementioned method is sug-
gested in Houbolt (1975) in an attempt to extend the
method of Zimmerman and Weissenburger (1964) to
systems with more than 2 degrees of freedom. How-
ever, the suggested variation appears to have difficul-
ties similar to those existing in Zimmerman and Weis-
senburger (1964), and there is no indication regarding
its use, or even of computed analytical results since it
had been proposed in 1975.

Gaukroger and others (1973; 1980) make use of a
different approach, much in accordance with the basic
approach adopted in this work, that is, the coefficients
of the equations of motion of the vehicle are identified,
and the flight flutter speed is computed following the
identification stage. However, the identification proce-
dure in Gaukroger and others (1973; 1980) is different
than the one presented in this work, and the results pro-
duced in Gaukroger and others (1973; 1980) relate to
binary systems only, much the same as in Zimmerman
and Weissenburger (1964). Even for the simplified bi-
nary systems presented in Gaukroger and others (1973;
1980), the identification of the coefficients of the equa-
tions of motion yielded substantial errors in the coeffi-
cients. However, the final values regarding the flutter
speed were in reasonably good agreement with the the-
oretical flutter speeds.

In the following work, attempts will be made
to identify the coefficients of the equations of mo-
tion of dynamic systems. Following this identifica-
tion stage, applications to simulated flight flutter test-
ing will be made. The examples presented include
the identification of the equations of motion for a 5-
degrees-of-freedom mass-string system; the identifi-
cation of seven modes of a continuous simply sup-
ported uniform beam; the identification of a 9-degrees-
of-freedom DAST (NASA’s drone for aerodynamic
and structural testing) aircraft model and computa-
tion of its flutter dynamic pressure; and finally, the



identification of a 12-degrees-of-freedom YF-17 air-
craft model and the eventual computation of its flutter
dynamic pressure.

NOMENCLATURE

Variables

b reference semichord length

9 structural damping coefficient
k reduced frequency (= wb/V)
m number of excitation vectors

n number of modes

ng number of excitation frequencies
np number of measurement points
Up flight dynamic pressure

dr flutter dynamic pressure

vV {light speed

Bi tth aerodynamic lag term

L real part of eigenvalue X

¢ viscous damping coefficient

)] air density

A complex eigenvalue

w frequency of oscillation

Wy natural frequency of oscillation
wq damped frequency of oscillation
wp flutter frequency

Matrices

[A] aerodynamic matrix

aerodynamic matrices defined in
equation (16)

[B] defined in equation (10)

[ Brl,[By] defined in equation (12)

[C] defined in equation (5)

(C] damping matrix

[Cr] total damping matrix defined in
equation (21)

[F] defined in equation (5)

[F] forcing matrix

[K] defined in equation (5)

(K] stiffness matrix

[KT] total stiffness matrix defined in
equation (21)

[M] mass matrix

[q] response amplitudes

[ql; response amplitudes associated with
the sth frequency of excitation

(q0] response matrix

[T] defined in equation (9)

[Tr],[T7] defined in equation (12)

[x] eigenvector

[2] matrix of displacements (in physical
coordinates)

[$] mode shape matrix

ANALYTICAL APPROACH

Identification of the Equations of Motion

Let the equations of motion be given by

[M]lGo] +[Clldo] + [K1lgo] = [Fle™t (1)

where all the coefficient matrices are real. It is desired
to identify the coefficients of equation (1) by exciting



the system over a range of frequencies using one or
more forcing vectors, the magnitude of which need not
be known.

Equation (1) can also be written as
(—-[Mw? + [Cliw+ [ED[q) = [F1 (2

where

[go] = [qle™! (3)

Note that matrices [ M], [C], and [ K] are of order
n x n, where nis the number of degrees of freedom of

the system, and [ g] and [ F'] are matrices of order n x

m, where m represents the number of fixed amplitude
forcing columns used during the excitation.

If one assumes that [ £'] is known, and [ q] is mea-
sured, then it is possible to generate enough equations
during a frequency sweep to determine the matrix co-
efficients [ M1, [C], and [ K].

If [F] is assumed to be unknown, then it may
be more convenient to premultiply equation (2) by
[ ]! to obtain

(—[Nw? + [Cliw+ [KDIgl = [F] (4)

where

[F1=[M]7'[F] (5)

and where [ ] is the unit matrix. Assume the Sys-
tem is excited with frequencies wy, wo, ... Wns, With
responses [ql1, [¢lz2,...[qlas. Equation (4) can then
be written in the form

[Cliwi[qli + [K]lqli — [F] = w}[qh
[Cliwzlglz + [K1l[ql2 — [F1 = w3[q):

[Cliwns (gl + [K)[glas — [F] = Wl qlny
(6)
Equation (6) can be written in a compact form, after
transposing it, that is,

(gl iwilqlf —[I] T -
: K
(gl unlqly 1] [[C]JT _
[qlaf iwnrlqlyy —[I] )
w;[qh; |
[
wilde
w%f[Q],Tf_
Equation (7) can be written as
KT
[(T1| CT | =[B) (8)
FT
where
'[th iw1[q]1: —[1)
[q] welqly, —[I
—_—— 1W2:92 {J ©)
| [gla; iwnplqlyy —[I]
rwi[q]g
wi[q]
B=| .27 (10)
| wiylalyy

Note that matrices [ T'] and [ B] are complex ma-
trices. If normal complex least square analysis is ap-
plied to equation (8), or if a generalized inverse of ma-
trix [T'] is computed, the computed values for [ K],
[C], and [F] are exact only if exact responses arc
considered when constructing matrix [T]. If errors
are allowed to exist in the measured responses [ ¢l;,
the resulting identified coefficients show large errors in
the computed values. This extreme sensitivity to errors
makes this formulation worthless for practical applica-
tions. This sensitivity to errors may be attributed to the
fact that if matrix [T'] is complex, the resulting solu-
tion for the matrices [ K], [ C], and [ F'} assumes com-
plex form. This means that the number of unknowns
in equation (8) is effectively doubled when allowing
for the real and imaginary parts of each of the solu-
tion matrices. To cut down the number of unknowns,
equation (8) will be reformulated so as to constrain the
solution for matrices [ K], [C], and [ F] to assume
real values only. Later on, these constraints will im-
pose limitations on the acrodynamic representation of
the equations of motion, but this must be accepted if



one wishes to avoid the aforementioned extreme sen-
sitivity of the solution to measurement errors.

Equation (8) is split into its real and imaginary
parts, while constraining the solution matrices to as-
sume real values. Hence, equation (8) can be written
as

T \
[Trl | CT | = [Bgl
FT
- ' (11)
.
(T | €T | = B
FT
where
[T] = [Tgl+ilTy)
[B] = [Bﬁ]n[Bﬂ} (2

Equation (11) can be written more compactly as

KT
TR CT = BR
Tr FT Br

Equation (13) is solved herein using a generalized
inverse algorithm for real matrices based on singu-
lar value decomposition (IMSL subroutine LSVDF),
to yield

(13)

KT +

cr |=| Ik Ba (14)
FT T7 B

where the symbol * denotes the generalized inverse of
the matrix. Note that matrices [ Tg] and [ T] are of

order (nf x m) x (2n+ m) and [ Bg] and [ B;] are
of the order (nf x m) x n. Hence

Tr 1
T7

is of the order (2 nf x m) x (2n+ m) and
By |
BIJ

is of the order (2nf x m) x n. Clearly, the solution
matrix

K'T
CT
FT

is of the order (2n+ m) X n. It should also be noted
that if equation (1) relates to generalized coordinates,
whereas measurements are made of physical coordi-
nates z, then equation (14) can be used after transform-
ing the measured 2 responses into the g coordinates us-
ing the transformation matrix [ ¢], that is,

[z] = [¢]lq]

where the matrix [ ¢] is often chosen as the orthogonal
mode-shape matrix. The matrix [ 2] is of the order n;, x
m, where n, is the number of measurement points of
the physical coordinates; [ #] is of the order n, x nand
[q] is of the order n x m.

(15)

Formulation of the Flutter Equations

As already stated, the formulation of the flutter
equations is constrained to equations with real coef-
ficient matrices, following the aforementioned sensi-
tivity to errors of the measured responses. The struc-
tural equations of motion can easily be brought to the
form of equation (1). There remains to treat the aero-
dynamic coefficient matrix. This matrix is a function
of the flight Mach number, the reduced frequency k,
and the flight dynamic pressure Qp. For any specific
Mach number, the aerodynamic matrix [ A] can be ap-
proximated by the following Padé relation:

[Al = Qb ([Ao] + [A1lik + [ A2](ik)?

L = .
[142+;‘]’l'1C
+Z ik-i-ﬂj )

j=i

(16)

If one ignores all of the lag terms, equation (16)
assumes the form

1 1 1
[A] = EDVZ[AOJ + EpV[A;]z’w + i—p[Azl(iW)2

(17)
where _
[A1] = bl A;] } (18)

[Az2] = b*[A2]
and where b represents a reference semichord length
used to compute k.

The matrix [ A;] represents aerodynamic inertia
terms. These are normally small compared to the struc-
tural inertia terms and can therefore be ignored. Hence,
the aecrodynamic matrix can be written as

1 1
[A] = Esz[Ao] + 3PV Ar]iw (19)



Equation (19) is much in accordance with the British
method of representation of the equations of motion
for flutter analysis.

Introducing equation (19) into equation (1), one
gets the following modified form of equation (4):

(~[IJw? + [Crliw+ [K1)){ql = [F]  (20)
where
[oT1=[c1+%pV[A1]} o
[Kr] = [K]+ %pV?[ Ao

If [Crt] and [ K1] are determined for two values
@1 and Q2 of dynamic pressures, then equation (21)
yields

[KTlg=q, — [ KTlg=q

= 22
[Ao] Q2 — 0, (22)
-0, — [Crlg=
[A] = [(Crlg _0(?; [QLT]Q o 23)

Va T W
[K]=[KTlg=q, — Q21 A0l (24)
[C] = [Crlg-g, — %{All (25)

These equations will form the basis for the flutter
prediction to be presented in the following sections of
this work.

SUGGESTED PROCEDURE FOR
FLIGHT FLUTTER TESTING

Assuming that the coefficients of the equations of
motion can be reasonably identified, the following pro-
cedure is suggested for flight flutter testing.

1. Choose a flight Mach number and keep it constant
throughout this procedure.

2. Choose a flight altitude, and thus determine the
value of the flight speed V) and the value of the
dynamic pressure ) for the specific conditions
of this flight.

3. Make an excitation frequency sweep using forc-
ing vectors [ Flg, and recording the resulting re-
sponses [q11g,, (21, --- [gnflq,; -

4. Change the flight altitude keeping the Mach num-
ber constant, and thus determine a new value of
the flight speed V> and a new value for the dy-
namic pressure (Jz, with Q2 > Q.

5. With these new values of V2 and ()2, repeat
step 3 above with [F]g, to obtain [q]g,,

[q2]Q2:"'[qnf]Q2'

6. With the values obtained in step 3, solve for
[ K1lg=q,» [Crlg=q,, and [ F]g,. using equa-
tion (20).

7. With the values obtained in step 5, solve for
[ KTlg=q,, [C1lg=q,,and [ Flg=q, -

8. With the values of [Ktlg=g,» [Crlg=q,
[ KTlg=q,,and [ Crlg=q, obtained in steps 6 and
7, determine the matrices [C], [ K1, [ Ao], and
[ A1] using equations (22) to (25).

9. Solve, numerically, equation (20) for a range of
values of V and @) to compute the dynamic pres-
sure Qp_, -

10. If one wishes to, one could choose Q3 > Q2
and repeat steps 2 and 3 to produce [ K1]g-g;,
[Crlo=q;,and [ Flg=q,-

. 11. With the results associated with (J2 and Q3, re-

peat steps 8 and 9 to determine the flutter dy-
namic pressure QJp,_, and check for agreement
with Q) Fi_p-

12. Steps 10 and 11 can be repeated until reasonable
convergence of computed flutter dynamic pres-
sures is obtained.

PRESENTATION AND DISCUSSION
OF RESULTS

Numerical Examples

Four numerical examples are presented in this
work. Two of the examples relate to the identification
of simple dynamic systems without aecrodynamic con-
tributions, and two examples relate to the mathemati-
cal models of the drone for aecrodynamic and structural
testing (DAST) and the YF-17 aircraft. The identifica-
tion in the last two examples are followed by the com-
putation of the predicted flutter dynamic pressures.

Example 1 — Mass-String System

Example 1 was chosen in an attempt to test the
effectiveness and sensitivities of the proposed method



in identifying the various matrix coefficients, includ-
ing the forcing columns. The system is shown in fig-
ure 1. It comprises five lumped masses attached to a
string. The viscous dampers were chosen so that the
resulting damping matrix will not yield proportional
damping. The resulting coefficient matrices with val-
ues of T'/m€ = 300 and ¢/m = 1.8 are shown in
table 1. Both the damped and the undamped cigen-
values for this example are presented in table 2. The
eigenvectors are presented in table 3.

The system is excited analytically with forces
having constant amplitudes. The generated responses
are then used to identify the system. These responses
are also contaminated with errors generated by round-
ing the responses to two digits (thus introducing a
nonzero mean error of up to 5 percent).

The results obtained using a single forcing col-
umn are summarized in tables 4 through 6. Table 4
shows the values obtained for the identified system,
using exact responses with excitation frequency span-
ning over all the frequencies of the system. As can be
seen, the identified system essentially coincides with
the exact system. Table 5 is identical to table 4, except
for the reduced frequency range used for excitation,
spanning over three natural frequencies of the system,
and leaving two natural frequencies outside of the ex-
citation range. It can be seen that even for this case,
the identified results are essentially equal to the exact
system. This suggests that it may be advantageous to
select a conservative range of frequencies in the anal-
ysis, and then increase the range should frequencies be
found outside the excitation range. Table 6 shows the
results obtained using responses contaminated by er-
rors introduced while rounding these responses to two
digits. It can be seen that while the identified stiffness
matrix [ K] is correct to within 5 percent errors, the
damping matrix shows larger errors of up to 40 per-
cent. The identified forcing column values are essen-
tially the same as the exact values. At this stage, it can
be concluded that the identified system is very close to
the original system, provided the response errors are
small. Furthermore, the identified parameters which
are most sensitive to errors are the damping matrix
coefficients.

Results obtained using two different forcing vec-
tors are presented in tables 7 and 8. The program as-
sumes that each of these two forcing columns excites
the structure at identical frequencies. This is not es-

sential, and it may even be advantageous if, say, the
second forcing vector excites the system at interme-
diate frequencies (which fall between the frequencies
of excitation of the first forcing vector). Table 7 uses
exact responses in obtaining the values of the identi-
fied system, whereas table 8 uses responses rounded
to two digits. It can be seen that the exact responses
yield, once again, exact coefficients for the identified
system. Table 8§ shows that the two forcing vectors
had very large improvements in the coefficients when
contaminated responses are used (by rounding them to
two digits). It can be seen that the identified values of
the stiffness matrix [ K'] and the forcing vectors [ F]
are cssentially exact, whereas the identified values of
the damping matrix are within 6 percent error, which
is around the values of the errors introduced into the
responses. Attempts to smooth the responses prior to
their substitution in the [T'] matrix did not improve
the results, and, in many cases, the attempts led to de-
graded results.

Finally, tables 9 and 10 present results for the
same cases described in tables 7 and 8§ but with five
forcing columns. It can be seen that in this case,
the identified results are essentially exact, even when
the responses are contaminated by rounding them to
two digits.

The results described indicate the advantage of
using more than one forcing vector. It seems that for
reasonable results, at least two linearly independent
forcing vectors need to be used.

Tables 11 to 13 represent the results obtained
when using responses contaminated with 5 percent
random errors (instead of rounding the responses to
the nearest two-digit values). Table 11 relates to the
case where one forcing vector is used. It can be seen
that large errors result, somewhat higher than those ob-
tained when the responses were rounded to two dig-
its. Peak errors in the stiffness matrix terms reach val-
ues around 40 percent, and peak errors in the damp-
ing matrix terms may reach values around 60 percent.
However, even with these relatively large errors, the
eigenvalues of the identified system are close to those
of the exact system, with frequency errors reaching
maximum values of around 3 percent and peak eigen-
value damping errors of around 28 percent (this error
relates to the highest frequency mode, with much
smaller values of errors in the lower modes). Even
the eigenvectors obtained appear to be close to those



of the exact system, with a possible exception of the
29.68 rad/sec mode.

Table 12 shows the results obtained when using
responses contaminated by 5 percent random errors
and two forcing vectors. Dramatic reduction in er-
rors can be seen with peak errors in stiffness terms of
around 8 percent and peak errors in damping terms of
around 20 percent, with most other terms showing er-
rors less than 10 percent. Note that the frequencies ob-
tained in this case, for the identified system, are essen-
tially exact. The eigenvalue damping errors are within
2.5 percent, and the eigenvectors are essentially iden-
tical to those of the exact system. Table 13 shows sim-
ilar results when using five forcing vectors. Hence we
can see once again the importance of using more than
one excitation vector. Furthermore, we can see that the
peak errors in the eigenvalues and eigenvectors of the
identified system are appreciably smaller than the peak
errors in the individual matrix terms.

Example 2 — Simply Supported Continuous
Uniform Beam

Example 2 was chosen in an attempt to test the ef-
fects of the ignored higher modes on the identification
of the desired lower modes. The analytical model for
this beam is very simple, with pure sinusoidal mode
shapes. The beam is allowed 3-percent damping to
avoid infinite responses, and the objective set for this
example was to identify the seven lowest modes. The
frequencies were normalized with respect to the sev-
enth natural frequency, rendering the following values
for the first seven natural frequencies:

wy = 1/49=0.020408 ; ws = 4 /49 = 0.081633
w3 =9/49=0.18367 ; ws=16/49 = 0.32653
ws =25/49 = 0.51020 ; we = 36 /49 = 0.73469
wy=1

(26)

Since the damping coefficient ¢ is set to 0.03, the

real parts of the eigenvalues (w;¢) therefore will as-
sume the following values:

w1¢ = 0.00061225 ; wa¢ = 0.0024490
w3¢ = 0.0055102 ; ws = 0.0097959
ws(=0.015306 ; wel = 0.022041
wr¢ = 0.03

(27

The beam was analytically excited over a normal-
ized frequency range from 0 to 1.05. Since damping is

light, 600 values of equally spaced excitation frequen-
cies were initially used. The analytical responses were
computed at seven equally spaced locations along the
beam using the contributions of the lowest 36 modes.
In one set of cases, only seven modes were used to cal-
culate the analytical responses, in order to evaluate the
effects of truncation of the higher modes.

The results obtained using two forcing vectors
and the exact computed analytical responses of the first
seven modes only are summarized in table 14. Since
physical coordinates are being used, the stiffness and
damping matrices have little meaning beyond enabling
the computation of the cigenvalues and eigenvectors of
the identified system. As can be seen, the eigenvalues
(both real and imaginary parts) obtained from the iden-
tified system are essentially exact (see egs. (26) and
(27)). Table 15 presents results similar to those appear-
ing in table 14, except that in this case, the exact re-
sponses were computed using the contributions of the
lowest 36 modes. As can be seen, the identified fre-
quencices are essentially exact, with some errors in the
damping values, especially for the highest frequency.
All the results to be presented from here on relate to
analytical responses computed using 36 modes of the
continuous beam.

When the system is identified using responses
contaminated with errors, as for example 5 percent
random errors, the resulting eigenvalues and eigen-
vectors show extremely large errors. It appears as if
the higher frequencies “fold down” and mingle among
the exact values of the lower frequencies. The rea-
son for these large errors was eventually traced to
the small responses associated with the higher modes.
Since a least squares technique is effectively used
in solving equation (13), it appears that the small
values for the responses associated with the higher
modes carry little weight in the least squares expres-
sion when compared with the relatively large responses
associated with the lower modes. To overcome this
problem, some weighting needs to be given to the
high-frequency equations. Hence a weighting has
been introduced.

Table 16 shows the results obtained while using a
weighting proportional to the frequency of excitation,
with responses contaminated with 5 percent random
errors. As can be seen, excellent results are obtained
for all frequencies, except for the damping of the first
mode. At this stage, it is important to note that in this



beam example, the ratio between the highest and the
lowest frequencies has a value of 49. This is a large
ratio that does not exist in any practical flutter exam-
ple. Nevertheless, the results appearing in table 16 can
be improved by using a weighting which is constant
(= FREQC) up to a frequency equal to FREQC and
from thereon using a weighting equal to the frequency
of excitation. Table 17 shows such a result when us-
ing FREQC = 0.14. As can be seen, excellent results
are obtained except for the highest mode, where 6 per-
cent error in frequency is obtained and around 25 per-
cent error in damping. The errors associated with all
other modes are much smaller. No further efforts were
made to improve these results since it was felt that the
frequency ratio between the highest and lowest modes
was too high to affect any practical flutter problem.
Table 18 is similar to table 16 except that the exci-
tation frequency range, spanning from 0 to 1.12, is
subdivided into 14 subranges totaling 218 excitation
frequencies instead of the 600 frequencies previously
used. More frequencies were allowed around the reso-
nance frequencies and less frequencies when far from
resonance. The subranges were weighted to simulate
integration of the square of the errors along the fre-
quency axis. As can be seen from table 18, the results
obtained are essentially identical to those shown in
table 16.

Finally, table 19 shows the results obtained us-
ing 14 physical responses contaminated by 5 per-
cent random errors and transformed to the seven gen-
cralized coordinates using the known mode shapes.
Here again, 14 excitation subranges were used with
FREQC = 0.04. As can be seen, excellent results are
obtained except for the 10 percent error in the damping
of the first mode.

Example 3 — Flutter of the DAST Aircraft

The aforementioned two examples were very use-
ful in helping to formulate the identification problem
and the excitation forms so as to yield results which
can accept contamination errors. Example 3, together
with example 4 which relates to the flutter of the YF-17
aircraft, are intended to test whether the aerodynamic
simplifications made in equation (18) are valid, and
also whether the identification procedure can yield rea-
sonable flutter predictions from low dynamic pressure
simulated flights.

The three views of the drone for aerodynamic
and structural testing (DAST) are shown in figure 2.
The mathematical model of the DAST consists of two
rigid body modes (plunge and pitch) and seven elas-
tic modes ranging from around 10 to around 128 Hz.
The responses of the DAST aircraft were obtained for
Mach number M = 0.9 using an ‘exact’ aerodynamic
modeling of the aircraft with four lag terms in the Padé
representation. The range of excitation between 0.5 to
900 rad/sec was divided into eight subranges with a
total of 256 excitation frequencies. The exciting gen-
eralized forces were chosen so that all the ratios be-
tween the active generalized forces and the general-
ized masses are of the same order of magnitude for the
elastic modes. For the rigid body modes, the active
generalized forces were chosen to be between two to
three orders of magnitude smaller.

The root locus plot for the ‘exact’ mathematical
model is presented in figure 3. It can be seen that the
dynamic pressure at flutter is givenby Q p = 547 Ib/ft?
and the flutter frequency is given by wp = 114 rad/sec.
In all of the DAST root locus plots presented in this
work, the dynamic pressure increments have the value
of 25 Ib/fi?, and the dynamic pressure @ is varied from
0t 750 Ib/fi. The root locus plots are truncated so as
to show only those roots whose real parts lie within the
range of —50 to +20.

As already stated earlier, the flutter prediction is
based on the identification of the equations of motion,
and the identification stage in this example ran into
two difficulties. The first difficulty arises since the ‘ex-
act’ analytical scheme for solving the flutier equations
assumes undamped structural system, with damping
associated with acrodynamic terms only. Therefore,
this system could not be excited at zero dynamic pres-
sure (that is, with zero damping) since the responses
at resonance will be infinite. To overcome this diffi-
culty, 3 percent structural damping was assumed while
calculating the responses of the ‘exact’ system. The
second difficulty, of a more severe nature, occurred
at the identification stage since the matrix, for which
the generalized inverse was sought, showed a strong
singularity thus indicating it was rank deficient. The
source of this difficulty was eventually traced to the
two rigid body modes. These modes are unaffected by
the structural damping added to the system, and there-
fore, their damping remains zero. In addition, at zero
dynamic pressure, their stiffnesses are also zero so that



the frequency responses to a single excitation vector of
both the pitch and the plunge generalized coordinates
vary identically as 1/w? thus yielding a [T'] matrix
(see eq. (9)) with two columns identical to two other
columns. At this stage, one could have proceeded with
the generalized inverse by equating to zero the two
smallest singular values of matrix [ T'], but this would
have left the [ T'] matrix ill conditioned at small values
of @, thus undermining the purpose of this work, that
is, to predict flutter by identifying the system at rela-
tively low @) values. However, once the source of the
difficulty was traced, the fix was relatively simple, and
it involved using two different vectors of excitation,
where particular emphasis was placed on different ex-
citation of the rigid body modes. Once this was done,
excellent identification results were obtained, much in
accordance with the results described earlier for the
beam and for the mass-string system. This observa-
tion is important since around flutter speed there is a
tendency of two modes to coalesce, thus yielding two
modes with identical frequencies (but with different
dampings) and thus possibly giving rise to the diffi-
culty described earlier. Hence, it is concluded that the
excitation by more than one forcing vector is essential
for the identification to be successful.

Based on the aforementioned conclusions, the
system identification stage of the flutter example
treated herein is performed using two forcing vectors.
It is expected that the use of a large number of forcing
vectors may improve the numerical results, but by the
same token, it may tumn the method to be practically
unappealing owing to the difficulties involved when a
large number of exciters is needed. Hence all the re-
sults to be presented for the DAST were obtained from
a two-vector excitation system (that is, from at least
two shakers), spanning a frequency range between 0.5
to 900 rad/sec.

The root locus plot obtained by solving equa-
tion (20) for different values of Q, after identifying the
system at Q = 0 and at Q = 150 Ib/fi?, using ex-
act responses, is shown in figure 4. Figure 5 shows
similar results, except that this time the system was
identified at Q@ = 150 Ib/ft®> and at Q = 250 Ib/fi2.
It can be seen from figure 4 that for the identification
performed at the lower values of @, the predicted dy-
namic pressure is Qr ~ 560 Ib/ft*> with flutter fre-
quency wp =~ 113 rad/sec. These values are in excel-
lent agreement with those of the ‘cxact’ system (fig. 3),

especially if allowance is made for the discrepancy in-
volving the 3 percent structural damping introduced
into the identified system. It should be noted that the
effect of the 3 percent structural damping manifests it-
sclf in the form of displaced values for Q = 0. These
displaced values should lie along a line with a slope
of g/2, that is of 0.015, to the vertical axis and pass-
ing through the origin. All the root locus plots pre-
sented in this work, including those relating to exam-
ple 4 which deals with the YF-17 aircraft simulation,
clearly show this effect. Figure 5 is identical to fig-
ure 4, except that in this case the system was iden-
tified at Q@ = 150 1b/ft? and Q = 250 1b/fi>. The
flutter dynamic pressure computed in this case yields
QrF = 553 1b/fi®> and wp = 113 rad/sec. This is once
again in excellent agreement with the values obtained
using the ‘exact’ mathematical model. At this stage,
it may be concluded that the acrodynamic simplifica-
tions introduced in equation (19) are adequate and have
a negligible effect on the flutter dynamic pressure and
on the flutter frequency.

Figures 6 and 7 are similar to figures 4 and 5, re-
spectively, with the only exception that the responses
used during the identification stage were contaminated
with 5 percent random errors. It can be seen that the
effects of these errors on the flutter dynamic pressure
and the flutter frequency are not noticeable, yiclding
essentially the same values as for the case where no
errors were introduced into the responses.

At this stage, it should be stated that the identifi-
cation stage for this example needed no weighting for
the high modes since the ratio between the highest and
the lowest elastic modes was much smaller than in the
beam example (example 2). Furthermore, it should be
mentioned that the condition number of the matrix

7]

defined as the ratio between its highest and lowest
singular values, was greatly improved by scaling its
columns so as to yield equal maximum values in all
columns. This scaling of columns led to the reduction
of the condition number by at least two orders of mag-
nitude, and thus leading to a solution less sensitive to
contamination errors.

Example 4 — Flutter of the YF-17 Aircraft

The aerodynamic damping values for the DAST
example were large as manifested by the scales of the



abscissas of the root locus plots (after truncation) span-
ning from —50 to +20. It was felt that the identifi-
cation procedure might falter in cases where a much
lower aerodynamic damping is involved. Therefore,
it was decided to test the identification method on the
simulated data of the YF-17 aircraft which exhibits
relatively low aerodynamic damping values. It will
be shown that the (truncated) abscissas for this case
span from —3 to +4 instead of the —50 to +20 for
the DAST.

The plan view of the YF-17 aircraft is shown in
figure 8. The flutter mathematical model of the air-
craft includes 10 elastic modes, with natural frequen-
cies varying from around 4.6 to around 62 Hz, and
2 rigid body modes (plunge and pitch), thus yielding
a total of 12 modes. The excitation range for generat-
ing responses varies from 0.5 to 450 rad/sec. Two forc-
ing vectors were used, with relative values between the
various generalized forces in accordance with the pro-
cedure described for the DAST example.

Figure 9 shows the root locus plot using ‘exact’
acrodynamics with four lag terms and the ‘exact’ ma-
trix coefficients. Here, and in all other YF-17 root lo-
cus plots presented in this work, the increments in the
dynamic pressure are 5 Ib/ft?, with the dynamic pres-
sure varying from Q =0 to Q = 110 Ib/fi2. It can
be seen that the flutter dynamic pressure is given by
QF = 84 1b/ft?, and the flutter frequency assumes the
value wp = 37.4 rad/sec.

Figures 10 and 11 present results for the case
where no errors are introduced into the responses of
the aircraft. Figure 10 shows the results obtained for
the case where the system is identified at ) = 0 and
at Q = 20 1b/ft%. As can be seen, the results obtained
are essentially exact, yielding Qr ~ 86.5 1b/i?> and
wr ~ 37 .4 rad/sec. Inthis example, a 1 percent struc-
tural damping was assumed. This was done consid-
ering the light acrodynamic damping in this example.
Figure 11 shows results similar to those shown in fig-
ure 10, but for the case where the system is identified
at Q = 20 and Q = 35 1b/ft%. Here again, essentially
exact values are obtained, with Qr ~ 87 Ib/ft? and
wr ~ 36.8 rad/sec. Similar to the DAST example,
the origins of the root locus branches (at ¢ = 0) all
lie on a straight line passing through the origin, with a
slope of g/2 (= 0.005) to the ordinate.

Figures 12 and 13 show the results obtained when
the responses are contaminated with 5 percent ran-
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dom errors. It can be seen that the results are essen-
tially exact if one allows for the effects of the 1 per-
cent structural damping, yielding Qr = 86.5 Ib/ft?
and wp = 37.4 radfsec for the system identified at
Q =0 and Q =20 1b/ft?, and Qp = 86.1 Ib/ft?
and wp = 37.1 rad/sec for the system identified at
Q =20 and Q = 35 Ib/fi%.

CONCLUDING REMARKS

The results presented in this work have shown
that it is possible to identify the coefficients of the
acroelastic equations of motion of a dynamic system.
The method is robust only if the coefficients of the
equations of motion are real and the solution procedure
uses this fact. It is also found that for robustness, more
than one excitation vector needs to be used. This is true
in all the cases treated herein, but is particularly essen-
tial when few modes have either the same value of fre-
quency, or have frequencies with close values. In these
latter cases, particular attention is needed in providing
different excitation vectors, with particular emphasis
on the generalized forces associated with the identical
or close frequencies. This is particularly true for the
rigid body modes of the aircraft where not only the fre-
quencies are the same, or almost the same, but also the
dampings assume identical or close values. These rigid
body modes cannot be readily ignored during the iden-
tification procedure, since they have very strong aero-
dynamic coupling terms with the elastic modes, thus
leading to some unexplained elastic distortions at low
frequencies. These distortions greatly affect the identi-
fied results (when rigid body modes are ignored). The
results obtained indicate that in all cases, two excita-
tion vectors, with constant amplitudes throughout the
frequency sweep, yield very good results. In the case
of the beam where the elastic modes were spread over
a large frequency range, some weighting of the equa-
tions was necessary. However, none of the other ex-
amples required any weighting, and it is not believed
that practical flutter examples will ever need it. It was
also found that scaling of the matrix columns, to equal
maximum values before performing the generalized
inverse procedure, improved robustness by reducing
the ratio between the largest and the smallest singular
values by at least two orders of magnitude.

Indeed, it was surprising to find out how good
the introduced acrodynamic approximations were. Al-



though these approximations appear to yield aerody-
namic coefficients that are identical to the British rep-
resentation, nevertheless they are different in that the
British aecrodynamic coefficients relate to a constant re-
duced frequency, whereas in the present method, the
values of the identified coefficients include the effects
of the reduced frequency on the different modes. Fi-
nally, it is gratifying to find that in both flutter exam-
ples treated herein, the flutter dynamic pressures and
flutter frequencies are accurately predicted from simu-
lated flight data gathered at dynamic pressures far be-
low  r. However, it is still too carly to state whether
this method can be turned into a practical flight test-
ing method. To do this, one needs to test the method in
ground vibrations to gauge the errors introduced by the
experimental setup and their effects on the identified
system. In parallel, physical shaker locations should
be analytically evaluated in some flutter examples, and
the method need be reformulated for possible aerody-
hamic excitations using control surfaces with or with-
out excitation vanes. Wind-tunnel and flight valida-
tion tests need to be performed, and, if successful, the
method can be adapted to cope also with aircraft hay-
ing active flutter suppression systems.

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space Administration
Edwards, California, July 21, 1988
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TABLE 1. THE COEFFICIENT MATRICES FOR THE 5-DEGREES-OF-FREEDOM

MASS-STRING SYSTEM

[ 54 -18 0 0 -18
18 54 -18 -18 0
[Cl=] 0 —-18 36 18 0
0 —18 18 54 18
| -18 0 0 —-18 54
[ 600 =300 0 0 0
—300 600 —300 0 0O
[Kl=| O —300 600 —300 0
0 0 —300 600 —300
L0 0 0 —300 600
[M]=[I]

TABLE 2. EIGENVALUES OF EXAMPLE WITH 5 DEGREES OF FREEDOM

Mode A
no. Wy, 1 wq ¢
1 8.96575 —0.241154 8.906251  0.0268972
2 17.3205 —2.70000 17.1088 0.15885
3 24 4949 —1.80000 24 4287 0.0734847
4 30.0000 -4 .50000 29 .6606 0.15
5 33.4607 —3.35885 33.2916 0.100382

TABLE 3. EIGENVECTORS OF EXAMPLE WITH 5 DEGREES OF FREEDOM

Mode Mode Mode Mode Mode
1 2 3 4 5
0.2887 0.5000 0.5773 —-0.5000 —-0.2887
0.5000 0.5000 0 0.5000 0.5000
0.5773 0 —-0.5773 0 —-0.5773
0.5000 —0.5000 0 —0.5000 0.5000
0.2887 -0.5000 0.5773 0.5000 —0.2887




TABLE 4. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES
(n =5, nfreq = 100, wibegin = 0, wfend = 40.0, nfrce = 1)

SINGULAR VALUES SING(I)

0.805129 £+ 02 0.610284 F + 02 0.389048 K+ 02 0.304252FE + 02 0.939689 F + 01
0.906324 E+ 01 0.698794 E + 01  0.188909F + 01  0.149979 F + 01  0.374279 E + 00
0.146845 E + 00

INPUT MATRIX K

0.600000 £ + 03  —0.300000 FE + 03 0.000000 ' + 00 0.000000 F + 00 0.000000 ¥ + 00
—0.300000 F + 03 0.600000 E' + 03  —0.300000 E + 03 0.000000 E + 00 0.000000 E + 00
0.000000 £ + 00 —0.300000 E + 03 0.600000 ' + 03  —0.300000 £ + 03 0.000000 £ + 00
0.000000 E + 00 0.000000 E + 00 —0.300000 E + 03 0.600000 £ + 03 —0.300000 E + 03
0.000000 £ + 00 0.000000 ' + 00 0.000000F + 00 —0.300000 E + 03 0.600000 £ + 03

IDENTIFIED MATRIX K

0.600000 K + 03  —~0.300000 E + 03  —0.223821F — 12 0913047F — 12 —0.436984 K — 12
—0.300000 F + 03 0.600000 £ + 03  -0.300000 £ + 03 —0.318323F — 11 0.224532 ¥ — 11
-0.216360 K — 11 —0.300000 £ + 03 0.600000 E + 03  —0.300000F + 03 —0.909495E — 12

0.448352 ' — 11 —0.909495 F — 12 —0.300000 E + 03 0.600000 K + 03  —0.300000F + 03
—0.440892 F — 11 0.116529 F — 11 0.682121 E — 12 —0.300000 K + 03 0.600000 E' + 03

INPUT MATRIX C

0.540000E + 01  —0.180000 E + 01 0.000000 E + 00 0.000000 £ + 00 —0.180000 £ + 01
—0.180000 K + 01 0.540000E + 01  —0.180000 E + 01  —0.180000 F + 01 0.000000 £ + 00
(0.000000 £ + 00  —0.180000 E + 01 0.360000 ' + 01  —0.180000 K + 01 0.000000 E + 00
0.000000E + 00 —0.180000 F + 01  —0.180000 E + 01 0.540000 £ + 01  —0.180000 £ + 01
—0.180000 FE + 01 0.000000 & + 00 0.000000 F + 00 —0.180000 F + 01 0.540000 F + 01

IDENTIFIED MATRIX C

0.540000 F + 01 —0.180000 K + 01 0.204212 K — 13 0.807132 K — 13 —0.180000 F + 01

—0.180000 F£ + 01 0.540000 F' + 01 —0.180000 K + 01 —0.180000 K + 01 —0.972555 K — 13
—0.959233 K — 13  —0.180000F + 01 0.360000 F + 01 —0.180000 K + 01 0.101252F — 12
0.245137E — 12  —0.180000F + 01 —0.180000 £ + 01 0.540000 F + 01 —0.180000 K + 01

—0.180000 F + 01 0.429878E — 12 —0.313194E — 12 —0.180000 E + 01 0.540000 F + 01

INPUT MATRIX F**(T)

0.100000 £ + 03 0.000000 £ + 00 0.000000 E + 00 0.000000 K + 00 0.000000 E + 00

IDENTIFIED MATRIX F**(T)

0.100000 £ + 03 0.125233E — 12 —0.229150E — 12 0.452971F — 12 —0 367706 £ — 12




TABLE 5. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES WITH A REDUCED FREQUENCY
EXCITATION RANGE (SMALLER THAN THE SYSTEM'S FREQUENCY RANGE)

(n =5, nfreq = 100, wibegin = 0, wfend = 27.0, nfrce = 1, ntruncate = 0)

SINGULAR VALUES SING(I)

0.999001 E'+ 02 0.644175E+02 0.467998E + 02 0.157411E+ 02 0.112027E + 02
0.744586 E + 01 0.204753FE +01 0.144638EK + 01 0917581 E + 00 0.394669 E — 01
0.141374 E — 01

INPUT MATRIX K

0.600000 F + 03  —0.300000F + 03 0.000000 E + 00 0.000000 E' + 00 0.000000 E + 00
—0.300000 F + 03 0.600000 £ + 03  —0.300000 £ + 03 0.000000 £ + 00 0.000000 E + 00
0.000000 F + 00 —0.300000 F + 03 0.600000 £ + 03  —0.300000 £ + 03 0.000000 £ + 00
0.000000 FF + 00 0.000000 '+ 00 —0.300000 E + 03 0.600000 E' + 03  —0.300000 F + 03
0.000000 F + 00 0.000000 E + 00 0.000000 £'+ 00 —0.300000 £ + 03 0.600000 E + 03

IDENTIFIED MATRIX K

0.600000 F + 03  —0.300000F + 03 —0.380709FE — 10 0.414815F — 10 —0.275548 E — 10
—0.300000 E + 03 0.600000 K + 03 —0.300000F + 03  —0.355840FE — 10 0.235332 E — 10
—0.214584 £ — 11 —0.300000 E + 03 0.600000 F + 03  —0.300000 FE + 03 0.187583 F — 10

0.480327F — 11  —0.710543E — 11  —0.300000 F + 03 0.600000 E + 03  —0.300000 E + 03
—0.122498 K — 10 0.221121E — 10 —0.285922F —10 —0.300000 E + 03 0.600000 F + 03

INPUT MATRIX C

0.540000F + 01  —0.180000 FE + 01 0.000000 E' + 00 0.000000 E'+ 00 —0.180000 E + 01
—0.180000 F + 01 0.540000 '+ 01 —0.180000 £+ 01  —0.180000 F + 01 0.000000 K + 00
0.000000 7 + 00 —0.180000 FE + 01 0.360000 £ + 01  —0.180000 E + 01 0.000000 E + 00
0.000000F + 00 —0.180000E + 01  —0.180000 F + 01 0.540000 '+ 01  —0.180000 £ + 01
—0.180000 £ + 01 0.000000 K + 00 0.000000 £ + 00 ~0.180000 E + 01 0.540000 F + 01

IDENTIFIED MATRIX C

0.540000F + 01  —~0.180000 E + 01  —0.814460E — 12 0.106604 E — 11 —0.180000F + 01
—0.180000 F + 01 0.540000 E + 01  —0.180000 FE + 01 —0.180000 & + 01 0.864198 K — 12
—0.300759 EF — 12 —0.180000 F + 01 0.360000 E + 01 —0.180000E + 01 —0.533795FE — 12

0.940359 E — 13 —0.180000 E + 01  —0.180000 F + 01 0.540000 £ + 01 —0.180000F + 01
—0.180000F + 01 0791159 E — 12 —0.135580 K — 11  —0.180000 F + 01 0.540000 F + 01

INPUT MATRIX F**(T)

0.100000 E + 03 0.000000 F + 00  0.000000 E + 00  0.000000E + 00  0.000000 E + 00

IDENTIFIED MATRIX F**(T)

0.100000E + 03  0.959233F — 12 —0.814904 F — 12 0.536904FE — 12 —0.112710F — 11
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TABLE 6. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES ROUNDED TO TWO DIGITS
(n =5, nfreq = 100, wfbegin = 0, wfend = 40.0, nfrce = 1, ntruncate = 1, nsing = 0)

SINGULAR VALUES SING(I)

0.807032E +02 0.610709E +02 0.388331E + 02 0.303359E + 02 0.939338E + 01
0.910814 £+ 01  0.698627F + 01 0.189392E + 01 0.150738E + 01  0.392295E + 00
0.156853 F + 00

INPUT MATRIX K

0.600000F + 03 —0.300000 F + 03 0.000000 E + 00 0.000000 F + 00 0.000000 F' + 00
—0.300000 FE + 03 0.600000F + 03 —0.300000 F + 03 0.000000 F + 00 0.000000 E + 00
0.000000F + 00 —0.300000 F + 03 0.600000FE + 03 —0.300000 E + 03 0.000000 E + 00
0.000000 F + 00 0.000000F + 00 —0.300000 FE + 03 0.600000 F + 03  —0.300000 E + 03
0.000000 E' + 00 0.000000 FE + 00 0.000000 F + 00 —0.300000 F + 03 0.600000 E + 03

IDENTIFIED MATRIX K

0.586000 F + 03 —0.287116 F + 03 0.974557TE + 01  —0.316641E + 02 0.263701 E + 02
—0.286081 F + 03 0.572231E+ 03 —0.285391F + 03 0.615751 £ + 01 ~0.784484 F + 01
—0.206888F + 01 —0.273644 E + 03 0.563153 £+ 03 —0.265827TE + 03 —0.223147E + 02
—0.682018FE + 01 —0.812837E+01 —0.268178F + 03 0550117E +03  —0.264529 F + 03

0.286527E + 01 —0.600799F — 01 —~0.807834FE + 01 —0.282137F + 03 0.588391F + 03

INPUT MATRIX C

0.540000E + 01  —0.180000 F + 01 0.000000 E + 00 0.000000 E + 00 —0.180000 E + 01
—0.180000 E + 01 0.540000E + 01 —0.180000F + 01 —0.180000 F + 01 0.000000 FE + 00
0.000000E + 00 —0.180000 £ + 01 0.360000 E + 01  —0.180000 F + 01 0.000000 E + 00
0.000000 £ + 00 —0.180000E + 01 0.180000 F' + 01 0.540000[7 + 01 —0.180000 F + 01
—0.180000 E' + 01 0.000000 E + 00 0.000000 E + 00 —0.180000 E + 01 0.540000 F' + 01

IDENTIFIED MATRIX C

0.561371E +01 —0.102137F + 01 —0.710652 E + 00 0.703446 E + 00 —0.224857F + 01
—0.235185 FE + 01 0509210 E + 01 —0.754696 E + 00 —0.304576 E + 01 0.112021 E + 01
0.689283 E + 00 —0.237106 E + 01 0.296940 £ + 01 —0.638892FE + 00 —0.124476 E + 01
—0.366219E + 00 —0.104917E +01 —0.211044 E + 01 0.516889 F + 01 —0.141857F + 01
—0.170601 F + 01  —0.210497 E + 00 0.267120E + 00 —0.184889 FE + 00 0.541996 E + 01

INPUT MATRIX F*¥(T)

0.100000E + 03 0.000000F + 00 0.000000F + 00  0.000000F + 00  0.000000 E + 00

IDENTIFIED MATRIX F**(T)

0.997144 E+ 02 —0.781761E + 00 0.186927F + 01 —0.144992F + 01 0 .462906 E + 00




TABLE 7. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES AND TWO FORCING VECTORS

(n=35, nfreq = 100, wibegin = 0, wfend = 40.0, nfrce = 2, nderv = 0, ntruncate = 0, ndigits = 3, nsing = 0)

SINGULAR VALUES SING(I)

0.113830 K + 03
0.127581E + 02
0.118339 K + 01

INPUT MATRIX K

0.820036 F + 02
0.826819 K + 01
0.714605 F + 00

0.577449 E + 02
0.774559 E + 01

0.407324 E + 02
0.289272 F + 01

0.275308 E + 02
0.280360 F' + 01

0.600000 F + 03  —0.300000 F + 03 0.000000 E + 00 0.000000 K + 00 0.000000 E + 00
—0.300000 K + 03 0.600000 K + 03  —0.300000 E + 03 0.000000 E + 00 0.000000 E' + 00
0.000000 K + 00 —0.300000 F + 03 0.600000 E' + 03  —0.300000 E + 03 0.000000 E + 00

0.000000 K + 00
0.000000 E + 00

IDENTIFIED MATRIX K

0.000000 E + 00
0.000000 K + 00

—0.300000 F + 03
0.000000 F' + 00

0
—0

.600000 F + 03
.300000 K + 03

—0.300000 F + 03

0.600000 E' + 03

0.600000F + 03 —0.300000 F + 03  —0.710543 E — 12 0.227374 E — 12 —~0.383693 F — 12
—0.300000 £ + 03 0.600000 E'+ 03  —0.300000F + 03  —0.568434 E — 13 0369482 F — 12
0.207478 E — 11  —0.300000 E + 03 0.600000 E'+ 03 —0.300000 F + 03  —0.312639F — 12
—0.483169 K — 12  —0.795808 K — 12 —0.300000 K + 03 0.600000E + 03 —0.300000 E + 03
—0.179057F — 11 0.113687FE — 11  —0.397904 F — 12 —0.300000 E + 03 0.600000 E + 03

INPUT MATRIX C

0.540000 £ + 01  —0.180000 E + 01 0.000000 E + 00 0.000000 £ + 00 —0.180000 F + 01
—0.180000 F + 01 0.540000F + 01  —0.180000E + 01 —0.180000 E + 01 0.000000 E' + 00
0.000000E + 00 —0.180000 F + 01 0.360000 £ + 01 —0.180000 E + 01 0.000000 E' + 00

0.000000 £ + 00
—0.180000 F + 01

IDENTIFIED MATRIX C

0.540000 F + 01
—0.180000 E + 01
—0.852651 F — 13

0.699441 F — 13
—~0.180000 K + 01

—0.180000 F + 01
0.000000 E + 00

—0.180000 £ + 01
0.000000 E + 00

~0.180000 F + 01
0.540000 K + 01
-0.180000 F + 01
—0.180000 K + 01
0.534017F — 13

—0.737188 F — 13
—0.180000 F + 01

0.360000 £ + 01
—0.180000 K + 01
—0.981437F — 13

540000 F + 01
180000 E + 01

162723 F — 13
1830000 F + 01
180000 E' + 01
540000 £ + 01
180000 E + 01

—0.180000 £ + 01

0.540000 E' + 01

—0.180000 F + 01

0.370814 K — 13
0.657252 F — 13

—0.180000 F + 01

0.540000 F + 01

INPUT MATRIX F**(T)

0.100000 E' + 03
0.000000 E + 00

0.000000 E + 00
0.000000 £ + 00

0.000000 E + 00
0.000000 F + 00

0.000000 F + 00
0.000000 EZ + 00

0.000000 E + 00
0.100000 £ + 03

IDENTIFIED MATRIX F**(T)

0.100000 £ + 03
0.524025 F — 13

0.186517FK — 12
—0.186517F — 12

—0.110134 K — 12
0.214939 F — 12

0.834888 K — 13
—0.188294 K — 12

—0.162537FE — 12
0.100000 FE + 03
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TABLE 8. IDENTIFICATION OF MASS-STRING SYSTEM WITH RESPONSES ROUNDED TO TWO DIGITS,
USING TWO FORCING VECTORS

(n =5, nfreq = 100, wfbegin = 0, wiend = 40.0, nfrce = 2, nderv = 0, ntruncate = 1, ndigits = 2, nsing = 0)

SINGULAR VALUES SING()

0114106 E + 03 0820496 E + 02 0.576723E + 02 0.406613 £+ 02 0 .274326 E + 02
0.127830 £+ 02 0.825774E +01  0.773024E+ 01  0.289335F + 01  0.281242E + 01
0.119176 K + 01 0715271 F + 00

INPUT MATRIX K

0.600000E + 03  —0.300000 E + 03 0.000000 E + 00 0.000000 E + 00 0.000000 F' + 00
—0.300000 FE + 03 0.600000F + 03 —0.300000 E + 03 0.000000 F + 00 0.000000 E + 00
0.000000E + 00 —0.300000F + 03 0.600000 £ + 03 —0.300000E + 03 0.000000 £ + 00
0.000000 £ + 00 0.000000F + 00 —0.300000 E + 03 0.600000 E + 03  —0.300000 E + 03
0.000000 FE + 00 0.000000 E + 00 0.000000 £ + 00 —0.300000 E + 03 0.600000 E + 03

IDENTIFIED MATRIX K

0.596843E + 03  —0.294724 K+ 03 —0.176846 E + 01 —0.863264 E + 00 0.114821FE + 01
—0.296257TF + 03 0.593089 E + 03 —~0.297839F + 03 0.470965 £ + 00 —0.196209 E + 01
0.798027F + 00 —0.298236 F + 03 0.599565E + 03 —0.298236 K + 03 0.798027 K + 00
—0.196209 K + 01 0.470965FE + 00 —0.297839 F + 03 0.593089 E + 03 —0.296257T K + 03
0.114821E+ 01  —0.863264 K+ 00 —0.176846 £ + 01 —0.2904724 E + 03 0.596843 F + 03

INPUT MATRIX C

0.540000E + 01  —0.180000 E + 01 0.000000 K + 00 0.000000E + 00 —0.180000 F + 01
—0.180000 E + 01 0.540000FE + 01  —0.180000 K + 01  —0.180000 F + 01 0.000000 £ + 00
0.000000E + 00 —0.180000 F + 01 0.360000 £ + 01  —0 180000 E + N1 0.,000000 £ + 00
0.000000E + 00 ~0.180000E + 01  —0.180000 E + 01 0.540000 £ + 01  —0.180000 E + 01
—0.180000 F + 01 0.000000 E + 00 0.000000 £ + 00 —0.180000 E + 01 0.540000 F + 01

IDENTIFIED MATRIX C

0.557895F + 01 —0.170116 £ + 01 0.978228FE ~ 01 —0.850484FK — 02 —0.180889 F + 01
-0.193914 F + 01 0.539453 '+ 01 —~0.177369 E + 01  —0.169785 E + 01 0.865564 F/ — 01
—0.199781E - 01  —0.196868 E + 01 0.349926 E+ 01  —0.196868F + 01  —0.199781 F — 01

0.865564 F — 01 —0.169785FE + 01 —0.177369 F + 01 0.539453 E+ 01 —0.193914 F + 01
—0.180889 F' + 01 —0.850484 F — 02 0.978228 K~ 01 —0.170116 £ + 01 0.557895 F + 01

INPUT MATRIX F**(T)

0.100000 E'+ 03 0.000000 F + 00 0.000000 E + 00  0.000000F + 00 0.000000 £ + 00
0.000000 E + 00 0.000000F + 00 0.000000E + 00  0.000000E + 00 1.000000 E+03

IDENTIFIED MATRIX F**(T)

0.100219E+ 03  —0.259031E + 00 0.140905 & + 00 0.458221 K — 01 0.918566 £ — 01
0.918566 F — 01 0.458221 K — 01 0.140905E + 00 —0.2590315 + 00 —0.100219 E + 03




TABLE 9. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES AND FIVE FORCING COLUMNS
(n=35, nfreq = 100, wibegin = 0, wfend = 40.0, nfrce = 5, nderv = 0, ntruncate = 0, ndigits = 3, nsing = 0)

SINGULAR VALUES SING(I)

0.278734 E + 03
0.312493 F + 02
0.861631F + 01

0.100354 E + 03
0.995577 F + 01
0.483233 F + 01

0.811368 F' + 02
0.941263 F + 01
0.415057 F + 01

0.671963 F + 02
0.907758 E + 01
0.195707F + 01

0.579641E + 02
0.901629 E + 01
0.192773 F + 01

INPUT MATRIX K

0.600000 E + 03
—0.300000 E' + 03
0.000000 E + 00
0.000000 E' + 00
0.000000 E + 00

IDENTIFIED MATRIX K

—0.300000 F + 03
0.600000 F' + 03
—0.300000F + 03
0.000000 £ + 00
0.000000 £ + 00

0.000000 E' + 00

—0.300000 F + 03

0.600000 E + 03

—0.300000 E + 03

0.000000 E' + 00

0.000000 £ + 00
0.000000 E + 00
—0.300000 E + 03
0.600000 E + 03
—0.300000 £ + 03

0.000000 E + 00
0.000000 £ + 00
0.000000 E' + 00

—0.300000 £ + 03

0.600000 £ + 03

0.600000 E' + 03
—0.300000 F + 03
0.203662 F — 11
—0.312639 F — 12
0.142109 F — 11

—0.300000 F + 03 0.214954 E — 12
0.600000 £ + 03  —0.300000 E + 03
—0.300000 F' + 03 0.600000 ' + 03
0.454747F — 12 —0.300000 £ + 03
—0.156319 F — 11 0.103560 £ — 11

0.170530 F — 12
—0.255795 E — 12
—0.300000 F + 03

0.600000 K + 03
—0.300000 E + 03

0.568434 F — 13
0.397904 E — 12
0.265534 F — 12
—0.300000 E + 03
0.600000 E + 03

INPUT MATRIX C

0.540000 E + 01
—0.180000 F + 01
0.000000 £ + 00
0.000000 £ + 00
—0.180000 E + 01

—0.180000 ' + 01
0.540000 E + 01
—0.180000 K + 01
~0.180000 ¥ + 01
0.000000 E' + 00

0.000000 E/ + 00

—0.180000 E + 01

0.360000 E' + 01

—0.180000 I7 + 01

0.000000 E' + 00

0.000000 E + 00
—0.180000 E + 01
—0.180000 FE + 01

0.540000 E + 01
—0.180000 K + 01

—0.180000 F + 01
0.000000 K + 00
0.000000 E' + 00

—0.180000 E + 01
0.540000 E + 01

IDENTIFIED MATRIX C

0.540000 E + 01
—0.180000 E + 01
0.866313 F — 13
0.648370 K — 13
—0.180000 E + 01

—0.180000F£ + 01  —0.651621F — 13

0.540000 ' + 01  —0.180000 F + 01
—0.180000 F + 01 0.360000 E + 01
—0.180000E + 01  —0.180000 E + 01
—0.117240 F — 12 0.129333 F — 12

—0.275335 £ — 13
—0.180000 F' + 01
—0.180000 F + 01

0.540000 F + 01
—0.180000 E + 01

—0.180000 F + 01
0.293099 F — 13
0.351885F — 14

—0.180000 F + 01
0.540000 E' + 01

INPUT MATRIX F**(T)

0.100000 E + 03
0.000000 £ + 00
0.000000 £ + 00
0.000000 £ + 00
0.000000 K + 00

[DENTIFIED MATRIX F**(T)

0.100000 F + 03
—0.532907E — 13
—0319744 E — 12
—0.185281F — 12
—0.188294 F — 12

0.000000 E + 00
0.000000 E' + 00
0.100000 E' + 03
0.000000 ' + 00
0.000000 E' + 00

—0.123279 F — 11

0.355271 K — 14
0.100000 E' + 03
0.327390F — 12
0.181188 K — 12

0.000000 E + 00
0.000000 E + 00
0.000000 E + 00
1.000000 E + 03
0.000000 E + 00

—0.239980F - 12

0.343008 F — 12

—0.111739 E — 12

0.100000 F + 03
0.182793 F — 12

0.000000 E' + 00
0.000000 E' + 00
0.000000 ' + 00
0.000000 E + 00
1.000000 K + 03

0.586198 K — 12
—0.301981 F — 12
—0.195399 F — 12

0.233939F — 12

0.100000 E' + 03

0.000000 E + 00
0.100000 £ + 03
0.000000 E + 00
0.000000 E + 00
0.000000 £ + 00

0.706990 F — 12
0.100000 E + 03
—~0.159872 F — 12
—0.251703 F — 12
—0.159872 F — 12
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TABLE 10. IDENTIFICATION OF MASS-STRING SYSTEM USING RESPONSES ROUNDED TO TWO DIGITS AND
FIVE FORCING COLUMNS

(n =5, nfreq = 100, wibegin = 0, wfend = 40.0, nfrce = 5, ntruncate = 1, nsing = 0)

SINGULAR VALUES SING(I)

0.279289 F + 03
0.313014 FE + 02
0.860725F + 01

0.100350 E + 03
0.995633 E + 01
0.482696 F + 01

0.810687E + 02
0.941196 E + 01
0.415145F + 01

0.673052 E + 02
0.907725E + 01
0.196900 E + 01

0.578963 F + 02
0.901826 E + 01
0.193199 F + 01

INPUT MATRIX K
0.600000E + 03  —0.300000F + 03 0.000000 E + 00 0.000000 E + 00 0.000000 E + 00
—0.300000 £ + 03 0.600000E + 03  —0.300000 F + 03 0.000000 E + 00 0.000000 E + 00
0.000000E + 00 —0.300000 E + 03 0.600000F + 03  —0.300000 F + 03 0.000000 F + 00
0.000000 E + 00 0.000000E + 00 —0.300000 F + 03 0.600000 £ + 03  —0.300000 E + 03
0.000000 E + 00 0.000000 F + 00 0.000000 £ + 00 —0.300000 E + 03 0.600000 F + 03
IDENTIFIED MATRIX K

0.597600 F + 03
—0.297177E + 03
—0.164678 E + 01

0.425542 E + 00

0.107052 E + 00

—0.296943 F + 03

0.596373 E + 03
—0.297408 E + 03
—0.820422 E + 00
—0.843780 F — 01

—0.165657F + 01
~0.297361 E + 03

0.596766 E + 03
~0.297361 F + 03
—0.165657 E' + 01

—0.843780 F — 01
—0.820422 E + 00
—0.297408 £ + 03

0.596373 F + 03
—0.296943 F + 03

0.107052 E + 00
0.425542 £ + 00
~0.164678 E + 01
—0.297177E + 03
0.597600 E' + 03

INPUT MATRIX C

0.540000E + 01  —0.180000 F + 01 0.000000 E + 00 0.000000E + 00 —0.180000 F + 01

—0.180000 E + 01 0.540000FE + 01 —0.180000 F + 01  —0.180000 £ + 01 0.000000 E + 00
0.000000E + 00 —0.180000 E + 01 0.360000 E + 01  —0.180000 F + 01 0.000000 E + 00
0.000000E + 00 —0.180000F + 01  —0.180000 £ + 01 0.540000 F + 01  —0.180000 E + 01

—0.180000 F + 01 0.000000 F + 00 0.000000 E + 00 —0.180000 E + 01 0.540000 E + 01

IDENTIFIED MATRIX C

0.538372 F + 01
—0.178253 E + 01
—0.115444 E — 01

0375789 E — 01
—0.181218 E + 01

—0.179809 E + 01

0.539514 E + 01
—0.179368 F + 01
—0.180406 F + 01
~0.163945 F — 01

—0.252365 E — 01
-0.173583 E£ + 01

0.350283 E' + 01
—0.173583 E + 01
—0.252365FE — 01

—0.163945F — 01
~0.180406 E' + 01
—0.179368 F + 01

0.539514 E + 01
—0.179809 £ + 01

—0.181218 K + 01
0.375789 E — 01
—0.115444 F —- 01
—0.178253 E + 01
0.538372 F + 01

INPUT MATRIX F**(T)
0.100000E'+ 03 0.000000F + 00  0.000000F + 00 0 000000 E + 00 0.000000 E + 00
0.000000 £ + 00 0.000000F + 00  0.000000E + 00 0 .000000 F + 00 0.100000 F + 03
0.000000 £ + 00 0.100000F + 03  0.000000 E + 00 0 000000 E + 00 0.000000 E + 00
0.000000 £+ 00 0.000000E + 00  1.000000 E + 03 0 000000 E + 00 0.000000 F + 00
0.000000 £+ 00  0.000000F + 00  0.000000 E + 00 0.100000 ' + 03 0.000000 E + 00

IDENTIFIED MATRIX F**(T)

0.996082 FE + 02
—0.148873 F — 01
0.218553 E' + 00
0.133903 F + 00
0.815127E — 01

0.190199 E + 00
0.558700 F — 01
0.996508 E' + 02
0.655929 E + 00
—0.179082 E + 00

0.134360 £ — 01
0.134360 E — 01
0.32019E + 00
0.990216 E + 02
0.320199 E + 00

0.558700 F — 01
0.190199 F + 00
—0.179082 E + 00
0.655929 E + 00
0.996508 E + 02

—0.148873 F — 01
0.996082 E + 02
0.815127 F — 01
0.133903 E + 00
0.218553 E' + 00
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TABLE 11. IDENTIFICATION OF MASS-STRING SYSTEM WITH RESPONSES CONTAMINATED BY 5 PERCENT RANDOM

ERRORS USING ONE FORCING VECTOR

(n =5, nfreq = 100, wibegin = 0, wfend = 40.0, nfrce = 1, nderv = 0, ntruncate = 0, ndigits = 0, nsing = 0, nrand = 1, ranpcent = 5.0)

SINGULAR VALUES SING(I)

0.810376 K + 02
0916512 £ + 01
0.221762 E + 00

0.611324 F + 02
0.697298 F + 01

INPUT MATRIX K

0.600000 E + 03
—0.300000 E + 03
0.000000 E + 00
0.000000 E + 00
0.000000 E + 00

—0.300000 E + 03
0.600000 FE + 03
—0.300000 E + 03
0.000000 F + 00
0.000000 F + 00

IDENTIFIED MATRIX K

0.595943 F + 03
—0.289290 F + 03
—0.645780 E + 00
—0.106536 E + 02

0.459025 F + 01

—0.254982 F + 03
0.508327F + 03
—0.193836 £ + 03
—0.743161 £ + 02
0.314581 F + 02

INPUT MATRIX C

0.540000 F + 01
—0.180000 K + 01
0.000000 E + 00
0 .000000 F + 00
—0.180000 F + 01

—0.180000 K + 01
0.540000 FE + 01
—0.180000 F + 01
—0.180000 £ + 01
0.000000 E + 00

IDENTIFIED MATRIX C

0.638825F + 01
—0.380275 F + 01
0.277855 FE + 01
—0.226159 F + 01
—0.705297 E + 00

—0.256800 F + 01
0.690763 E + 01
—0.466157E + 01
0.116000 E + 01
—0.124906 E + 01

INPUT MATRIX F**(T)
0.100000 F + 03 0.000000 ' + 00
IDENTIFIED MATRIX F**(T)

0.102411E+03  -0.331347E+01

0.389486 F + 02
0.188564 K + 01

0

—0
-0

0
—0
-0

.000000 E + 00
300000 £ + 03
600000 K + 03
300000 E' + 03
.000000 E' + 00

628979 E + 02
156406 F + 03
393238 K + 03
120407 F + 03
160430 E + 02

060000 E + 00
180000 E + 01
360000 B+ 01
180000 ' + 01
.000000 K + 00

.859907 F + 00
147975 E + 00
245420 F + 01
179366 E + 01
200627 F + 00

0.000000 E + 00

0.637162E+01

0.305393 F + 02
0.150699 E + 01

.000000 £ + 00
.000000 K + 00
.300000 E' + 03
.600000 F/ + 03
300000 E + 03

593688 F + 02
142342 £ + 03
699174 E + 02
374253 K + 03
199994 E + 03

.000000 E' + 00
180000 £ + 01
80000 E + 01
540000 F + 01
180000 £ + 01

164740 F + 01
602997 E + 01
320580 F + 01
223212E + 01
734732 E + 00

0.000000 F + 00

-0.654855E+01

0.947908 E + 01
0.412525E + 00

[ e i ]

.000000 F + 00
.000000 £ + 00
.000000 £ + 00
300000 F + 03
.600000 F + 03

418472 F + 02
J990645 F + 02
.160582 K + 03
138458 E' + 03
528483 F + 03

180000 E + 01
.000000 E + 00

180000 E + 01
.540000 E + 01

350468 E' + 01
369787 K + 01
455018 F + 01
149027 E + 01
413788 F + 01

0.000000 £ + 00

0.326556E+01
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TABLE 11. Concluded.

Identified system

Input system

Real Imaginary Real Imaginary
A —0.2392 F + 01 0.3438E£ + 02 —0.3359E + 01 0.3329 E + 02
03221E+00 —0.4156F — 01 0.2887 F + 00 0.1713FE — 15
—0.5404 E' + 00 0.7587E —-01 —0.5000FE+00 —02113F —14
{z} 0.5758 E + 00 0.0000 FE + 00 0.5774 E + 00 0.0000 E + 00
—0.4401E+00 —0.1071E+00 —0.5000E+00 —0.5711F —15
0.2246 E + 00 0.9828 F — 01 0.2887 E+00 —0.2284 E — 15
A —0.3898 F + 01 0.2891FE +02 —0.4500F + 01 0.2966 E + 02
—05172E+00 —05276 E—01 —0.5000F + 00 04121E — 15
0.6099 E + 00 0.0000 F + 00 0.5000 E + 00 0.0000 E + 00
{z} 0.3381 E + 00 0.1481E+00 —0.1439F — 14 0.3641FE — 15
0.4282FK —01 —03311E+00 —0.5000E+00 —0.6868F — 15
0.6161 F — 01 0.3260 E + 00 0.5000 E + 00 0.2060 E — 15
A —0.1870 F + 01 02439 E+02 —0.1800F + 01 0.2443FE + 02
—05632E+00 —08426E—02 —0.5774E +00 0.7274 E — 15
—0.1945 E — 01 0.4464 FF — 02 0.6929 E — 15 0.6871E — 15
{z} 0.5884 E + 00 0.0000 E + 00 0.5774 E + 00 0.0000 E + 00
—0.2112FE — 02 0.2526 E—01 —0.613E—15 —0.3938K — 15
—~0.5768E + 00 —0.5298E — 01 —0.5774E+00 —0.3810F — 15
A —0.2661 F + 01 0.1711FKF+02 —02700F + M 0171LE + 02
0.5018E + 00 0.0000E +00 —0.5000E+00 —0.909E — 15
0.5015E + 00 0.1011E—-01 —0.5000E+00 —0.4079E — 15
{z} —03410F —02 0.1263E — 01 0.1697E —14 —-0.9205F — 15
—0.4983E+00 —0.1199E —01 0.5000 FE + 00 0.0000 E + 00
—0.4978E + 00 —0.1043FE —01 0.5000 E + 00 03137E—16
A —0.2402 FE + 00 0.8962E +01 —0.2412FE + 00 0.8963F + 01
0.2894 F' + 00 0.5452 F — 02 0.2887 E + 00 0.1758 E — 15
0.5006 E' + 00 0.1672E — 02 0.5000E+00 —0.1055F — 15
{z} 0.5773 E + 00 0.0000 E + 00 0.5774 E + 00 0.0000 £ + 00
0.4993E+00 —0.4662F —02 0.5000E+00 —0.1407E — 15
0.2881E+00 —0.2236 E — 02 0.28387 F + 00 0.1934 E — 15
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TABLE 12. IDENTIFICATION OF THE MASS-STRING SYSTEM WITH RESPONSES CONTAMINATED BY 5 PERCENT
ERRORS, USING TWO FORCING VECTORS

(n =5, nfreq = 100, wfbegin = 0, wfend = 40, nfrce = 2, nderv = 0, ntruncate = 0, ndigits = 0, nsing = 0, nrand = 1, ranpcent = 5)

SINGULAR VALUES SING(1)

0.113636 E + 03
0.127338 E + 02
0.118886 F + 01

0.821057FE + 02
0.826123 F + 01
0.736966 E + 00

0.577159 E + 02
0.776452 E + 01

0.407132 K + 02
0.289924 E + 01

0.276802 F + 02
0.281445E + 01

INPUT MATRIX K
0.600000FE + 03  —0.300000 F + 03 0.000000 E + 00 0.000000 E + 00 0.000000 E + 00
—0.300000 E + 03 0.600000F + 03 —0.300000 E + 03 0.000000 E + 00 0.000000 E + 00
0.000000 E + 00 —0.300000F + 03 0.600000 F + 03 —0.300000 E' + 03 0.000000 E + 00
0.000000 F + 03 0.000000 E + 00 —0.300000 F + 03 0.600000 E + 00 —0.300000 E + 03
0.000000 E + 00 0.000000 E' + 00 0.000000 E + 00 —0.300000 FE + 03 0.600000 E + 00
IDENTIFIED MATRIX K
0.594185E +03 —0.291472E+03 —0.656767 F + 01 0.353434 E+ 01  —0.867322FE + 00

—0.288592 F + 03
—0.110985E + 02
0.507562 E + 01

-0
-0

576535 F + 03
275517 E + 03
114907 E + 02

—0.277703 E + 03
0.573438 K + 03
—0.284552 FE + 03

142293 E + 02
278207 E + 03
584563 E + 03

0.624185F + 01
—0.817331 F + 01
—0.293429 F + 03

—0.104684 E + 01 —0.125127FE + 01 —0.202359 E+01 —0.297760F + 03 0.598571 F + 03
INPUT MATRIX C
0.540000 E + 01  —0.180000 E + 01 0.000000 E' + 00 0.000000 £ + 00 —0.180000 F + 01
—0.180000 F + 01 0.540000E + 01 —0.180000 K + 01 —0.180000 E + 01 0.000000 E + 00
0.000000E + 00 —0.180000FE + 01 0360000 E + 01 —0,1R0000 E + 01 0.000000 E + 00
0.000000FE + 00 —0.180000F + 01  —0.180000 F + 01 0.540000 K + 01 —0.180000 F + 01
—0.180000 K + 01 0.000000 E + 00 0.000000 £ + 00 —0.180000 F + 01 0.540000 £ + 01
IDENTIFIED MATRIX C
0.523275E+01 —0.174659 E + 01 —0.100059 E +00 —0.974456F —01 —0.167062F + 01

—0.198011 F' + 01 0

0.187856 E + 00
—0.176856 E — 01
—0.191548 F + 01

541224 B+ 01
204428 F + 01
137403 E + 01
—0.108815 F + 00

—0.166087 E + 01

0.334890 F + 01
—0.141109 F + 01 0
—0.275413 E + 00

166055 F + 01
217474 F + 01
568810 F + 01
195241 E + 01

—0.109726 E + 00
0.674523 F — 01
—0.160570 E' + 01
0.525610 F + 01

INPUT MATRIX F**(T)

0.100000 £ + 03
0.000000 F + 00

0.000000 £ + 00
0.000000 E' + 00

0.000000 E' + 00
0.000000 £ + 00

0.000000 £ + 00
0.000000 E + 00

0.000000 E + 00
0.100000 E + 03

IDENTIFIED MATRIX F**(T)

0.983363E+02
0.106519E+01

0.307570E+00
-0.110180E+01

0.859843E+00  -0.122294E+01
0.964407E+00  0.683939E-01

0.499973E+00
0.998547E+02
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TABLE 12. Concluded.

Identified system Input system

Real Imaginary Real Imaginary
A —0.3446 E + 01 0.3329E+02 —0.3359E + 01 0.3329E + 02
0.2869E+00 —0.9929FE — 02 0.2887 E + 00 0.1713E — 15
—0.4993 E + 00 0.6365E—-02 —0.5000E+00 —0.2113E — 14
{z} 05783 E + 00 0.0000 E + 00 0.5774 E + 00 0.0000 E + 00
—0.5004 E + 00 0.8303E—02 —0.5000E+00 —05711E—15
0.2882 E+00 —0.1479F — 01 0.2887 E+00 —0.2284 F — 15
A —0.4395FE + 01 0.2968E + 02 —0.4500F + 01 0.2966 F + 02
—0.4969 FE + 00 0.1628 K — 01 —0.5000 E + 00 0.4121F — 15
05004 E+00 —0.5428F — 02 0.5000E + 00 0.0000 E + 00
{r} —0.2208E—02 —0.3406E—02 —0.1439F — 14 0.3641F — 15
—0.4995E + 00 0.1025E—-01 —0.5000E+00 —0.6868F — 15
0.5028 £ + 00 0.0000 FE + 00 0.5000 E + 00 0.2060 F — 15
A —0.1729E + 01 0.2443FE+02 —0.1800E + 01 0.2443FE + 02
—0.5760 E + 00 0.1962FE — 01 —0.5774E + 00 0.7274 E — 15
—0.2400FE — 02 —0.9299FE — 02 0.6929F — 15 0.6871F ~ 15
{z} 0.5783E + 00 0.0000 E + 00 0.5774 E + 00 0.0000 E' + 00
0.5488KE —-03 —0.7725E—-02 -0.6103E—15 —0.3938E —15
—0.5773E + 00 0.135EK—-01 —-05774E+00 —0.3810F —15
A —0.2657F + 01 0.1712E+02 —0.2700FE + 01 0.1711E + 02
—~0.4993E+00 —04080FE —02 —05000E+00 —09099FE — 15
—0.4998E +00 —0.2474FE —02 —0.5000E+00 —0.4079E — 15
{r} —09424E — 03 0.4799FE — 02 0.1697FE —14 —0.9205E — 15
0.5002 F + 00 0.2247E - 03 0.5000 F + 00 0.0000 F + 00
0.5007 E' + 00 0.0000 E + 00 0.5000 E + 00 03137E ~ 16
A —0.2418E + 00 0.8962E +01 —0.2412E + 00 0.8963 FE + 01
0.2891 FE + 00 0.1210E — 02 0.2887 E' + 00 0.1758 E — 15
0.5005E +00 —0.5869F — 03 0.5000E+00 —0.1055E —15
{z} 0.5774 E' + 00 0.0000 E + 00 0.5774 E + 00 0.0000 E + 00
0.4992E+00 —0.1080F — 01 0.5000E+00 —0.1407FE — 15
0.2884 E + 00 0.7788 K — 04 0.2887 K + 00 0.1934 F — 15
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TABLE 13. IDENTIFICATION OF THE MASS-STRING SYSTEM WITH RESPONSES CONTAMINATED BY 5 PERCENT
RANDOM ERRORS, USING FIVE FORCING VECTORS

(n =35, nfreq =100, wibegin = 0, wfend = 40, nfrce = 5, nderv = 0 ntruncate = 0, ndigits = 0, nsing = 0, nrand = 1, ranpcent = 5)

SINGULAR VALUES SING()

0.674947TE + 02 0.580173 E + 02
0.908247FE + 01  0.901177E + 01
0.199922 F + 01 0.196229 F + 01

0.812816 K + 02
0.941646 E + 01
0.415906 £ + 01

0.279744 F + 03
0313713 E + 02
0.861687 £ + 01

0.100288 £ + 03
0.995525 £ + 01
0.484428 £ + 01

INPUT MATRIX K

0.000000 E + 00
0.000000 E + 00
0.000000 E + 00
—0.300000 E + 03
0.600000 F + 03

0.000000 E + 00
0.000000 E + 00
—0.300000 E + 03
0.600000 F + 03
—0.300000 E + 03

0.000000 E + 00
—0.300000 F + 03
0.600000 F + 03
—0.300000 FE + 03
0.000000 F + 00

—0.300000 F + 03
0.600000 F + 03
—0.300000FE + 03
0.000000 E + 00
0.000000 E + 00

0.600000 E + 03
—0.300000FE + 03
0.000000 E + 00
0.000000 K + 00
0.000000 E + 00

1IDENTIFIED MATRIX K

0.151260 E + 01
—0.540150 F' + 01
—0.282718 K + 01
—0.287120 F + 03

0.588515 K + 03

—0.464199 F + 01
—0.291235FE + 03

0.586711EF + 03
—0.287669 E + 03
—0.381536 F + 01

0.851605 E + 00
—0.700458 K + 00
—0.288167E + 03

0.580414 F + 03
—0.288546 F + 03

0.591900 F/ + 03
—0.288661 K + 03
—0.662487 F + 01
—0.237708 F + 01

0.379455 E + 01

—0.290599 F + 03

0.583348 E + 03
—0.287400 E + 03
—0.943632 E + 00
—0.407109 E' + 01

INPUT MATRIX C

0.000000 E + 00
—0.180000 £ + 01
0.360000 £ + 01
—0.180000 K + 01
0.000000 £ + 00

0.000000 F + 00
—0.180000 F + 01
—0.180000 E' + U1

0.540000 E + 01
—0.180000 E + 01

—0.180000 K + 01
0.000000 F + 00
U.0U0000 ) + 00

—0.180000 E + 01
0.540000 £ + 01

—0.180000 F + 01
0.540000 F + 01
—0.180000 E' + 01
—0.180000 F + 01
0.000000 E + 00

0.540000F + 01
—0.180000 F + 01
0.000000 FE + 00
0.000000 K/ + 00
—0.180000 F + 01

IDENTIFIED MATRIX C

—0.163016 E + 01

0.506214 F + 01
—0.160840 F' + 01
—0.167744 F + 01
—0.112703 E + 00

0.538023 K + 01
—0.169194 F + 01
—0.159521 F + 00

0.127531 E — 01
—0.172936 F + 01

0.680588 K — 01
—0.181617F + 01
0.334577 E + 01
—0.153805F + 01
—0.518368 F — 01

—0.598664 F — 03
—0.162600 E + 01
—0.188682 K + 01

0.522405 E + 01
—0.160310 E + 01

—0.168049 F + 01
—0.154139 FE + 00
—0.260642 £ — 01
—0.162362 E + 01

0.530303 E + 01

INPUT MATRIX F**(T)

0.100000 E + 03
0.000000 F + 00
0.000000 K + 00
0.000000 K + 00
0.000000 E + 00

0.000000 E + 00
0.000000 £ + 00
0.100000 E + 03
0.000000 E' + 00
0.000000 F + 00

0.000000 E + 00
0.000000 F + 00
0.000000 £ + 00
0.100000 E + 03
0.000000 E + 00

0.000000 F + 00
0.000000 F + 00
0.000000 E + 00
0.000000 E + 00
0.100000 E' + 03

0.000000 K + 00
0.100000 E + 03
0.000000 K5 + 00
0.000000 E + 00
0.000000 E + 00

IDENTIFIED MATRIX F**(T)

0.999927 F + 02
0.115166 £ + 01
0.663155 F + 00
—0.813813 F£ + 00
—0.958776 £ + 00

0.108633 F + 01
—0.177106 E + 01
0.969599 E + 02
0.103218 E + 01
0.211859 FE + 01

—0.116052 E + 01
—0.930904 £ — 02
0.247974 E + 01
0.971246 £ + 02
0.605688 £ — 01

—0.129725 F + 00
0.143839 E + 01
0.759462 E + 00
0.341816 E + 01
0.969814 F + 02

0.193322 F + 00
0.984132 F + 02

—0.151197 F + 01

—0.129490 F + 01
0.231097E + 01
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TABLE 13. Concluded.

Identified system

Input system

Real Imaginary Real Imaginary
A -0.3200 K + 01 03331E+02 —0.3359F + 01 0.3329F + 02
0.2856 E + 00 0.1153E — 01 0.2887 E + 00 0.1713E — 15
—0.4967E+00 —0.1260E—01 —0.5000E+00 —02113E — 14
{z} 0.5770 E + 00 0.0000 F + 00 0.5774 F + 00 0.0000 E + 00
—0.5032 F + 00 05074 E —-02 —0.5000E +00 —0.5711F — 15
0.2920E+00 —0.1572E — 02 0.2887FE+00 —0.2284FE — 15
A —0.4246 F + 01 0.2970E + 02 —0.4500F + 01 0.2966 F + 02
0.4998 F + 00 0.3023E —-01 —0.5000F + 00 04121E - 15
—0.4952E+00 —0.2047FE —01 0.5000 F + 00 0.0000 K + 00
{z} —0.7987E — 02 0.2386 E—02 —0.1439FE — 14 0.3641FE — 15
0.5041FE + 00 0.0000FE + 00 —0.5000F+ 00 —0.6868F — 15
—~0.4995E+00 —0.1633E — 02 0.5000 E + 00 0.2060F — 15
Y —0.2398 K + 00 08963 F +01 —0.2412FE+ 00 0.8963F + 01
0.2888K+00 —0.2463F — 02 0.2887 F' + 00 0.1758E — 15
0.5003 E' + 00 0.3370F — 03 0.5000E+00 —0.1055E — 15
{z} 0.5774 E + 00 0.0000 E + 00 0.5774 E + 00 0.0000 E' + 00
0.4997E+00 —0.4708F — 02 0.5000F + 00 —0.1407E — 15
0.2885E+00 —0.2799F — 02 0.2887FE + 00 0.1934 F — 15
A —0.2674 F + 01 0.1711E + 02 —0.2700F + 01 0.1711 E + 02
~0.4995E+00 —0382E—02 —0.,5000F + 00 09099 FE =15
—0.4997TE+00 —0.64499F —02 —0.5000E+ 00 —0.4079FE — 15
{z} —0.7201E—03 03104 E — 02 0.1697E —14 —0.9205EK — 15
0.5000 E' + 00 0.5524 E — 02 0.5000 E + 00 0.0000E + 00
0.5007E + 00 0.0000 £ + 00 0.5000 E + 00 0.3137E - 16
A —0.1798 E + 01 0.2443FE+ 02 —0.1800F + 01 0.2443 F + 02
—0.5773 FE + 00 0.1467TE—02 —0.5774E + 00 0.7274 FE — 15
0.1570E - 03 —0.1683FE — 02 0.6929FE — 15 0.6871F — 15
{z} 0.5774 E + 00 0.0000 E + 00 05774 E + 00 0.0000FE + 00
—0.3479E -03 —0.1367TE—~02 —0.6103E—15 —0.3938F — 15
—0.5773 E + 00 03366 E~02 —0.5774E+00 —0.3810E — 15
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TABLE 14. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS AND
EXACT RESPONSES OF THE FIRST SEVEN MODES ONLY
(n =7, nfreq = 600, wibegin = 0, wfend = 1.05, nfrcev = 2, nderv = 0, ntruncate = 0, ndigits = 0, nsing = 0, ngeneq =7, ( =0.03,
nrand = 0, ranpcent = 0)

INPUT MATRIX [F] TRANSPOSED

—0.100000 E + 02 0.000000 E + 00 0.000000 £ + 00 0.400000 E + 02 0.000000 E + 00
0.000000F + 00 —0.100000F + 02
0.000000 E' + 00 0.100000FE + 02 —0.600000 E + 02 0.000000 E + 00 0.600000 E + 02
—0.100000 E + 02 0.000000 E + 00

SINGULAR VALUES SING()

0.115942 F + 04
0.249105E + 02
0.140976 F + 02

0.183762 F + 03
0.235481 F + 02
0.122655E + 02

0.676501 F + 02
0.206399 E + 02
0.620207 E + 01

0.510157E + 02
0.162942 E + 02
0.553820 F + 01

0.257955E + 02
0.150041F + 02
0.489011F + 01

0.301421E + 01

IDENTIFIED MATRIX K

0.194333 E + 00
—0.103836 E — 01
0.124870 E + 00
—0.242166 E + 00
0.207858 E — 01
—0.252550 E + 00
0.129282 E + 00
—0.103836 E — 01
0.298417E + 00
—0.432996 E — 01

IDENTIFIED MATRIX C

0.221459 E' — 01
—0.249120 F - 03
0.346338 F — 02
—0.152006 E — 01
0.507200FE — 03
—0.154497E — 01
0.356842 F — 02
—0.249120E — 03
0.251020FE — 01
—0.109798 E — 02

—0.198867 F + 00
0.441206 E — 02
—0.536832 E — 01
0.319203 E + 00
—0.432996 E — 01
0.124870 F + 00
—0.252550F + 00
0.251978 E — 01
—0.198867 F + 00
0.104084 F + 00

—0.141026 E — 01
0.105045FE — 03
—0.134710E — 02
0.256092 E — 01
—0.109798E — 02
0.346338F — 02
—0.154497F — 01
0.612245F — 03
—0.141026 E — 01
0.295618F — 02

IDENTIFIED MATRIX [F] TRANSPOSED

—0.154553 E — 01

0.624034 E — 02
—0.122724 E — 01
—0.373314 E - 01

0.624034 F — 02
—0.154553E — 01
0.373314 E — 01
0.122724 F — 01

0.104084 E + 00
—0.198867E + 00
0.251978 E — 01
—0.252550 E + 00
0.124870 E + 00
—0.432996 E — 01
0.319203 E + 00
—0.536832 F — 01
0.441205 F — 02
—0.198867 E + 00

0.295618 E — 02
—0.141026 E — 01
0.612245 K — 03
—0.154497E — 01
0.346338 K — 02
—0.109798 E — 02
0.256092 E — 01
—0.134710 E — 02
0.105044 E — 03
—0.141026 E — 01

—0.457675FE — 02

—0.900742 F — 01

—0.432996 E — 01
0.298417F + 00
—~0.103836 E — 01
0.129282F + 00
—0.252550F + 00
0.207858 E — 01
—0.242166 E + 00
0.124870 F + 00
~—0.103835E — 01
0.194333E + 00

~0.109798 E — 02
0.251020 E — 01
—0.249120F -- 03
0.356842 F — 02
—-0.154497F — 01
0.507200 F — 03
—0.152006 E — 01
0.346338FE — 02
—0.249120F — 03
0.221459 FE — 01

0.708310 E — 01

0.550067E — 08

0.207858 F — 01
—0.242166 E + 00
0.104084 E + 00
—0.536832 F — 01
0.323615F + 00
—0.536832 F — 01
0.104084 E + 00
—0.242166 E + 00
0.207857TE — 01

0.507200E — 03
—0.152006 E — 01
0.295618 FE — 02
—0.134710F — 02
0.257143 F — 01
—0.134710 F — 02
0.295618 E — 02
—0.152006 E — 01
0.507199 E — 03

—0.457675F - 02

0.900742F — 01
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TABLE 14. Concluded.

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM

A

{z}

{z}

Real
—0.300000 F — 01

—0.127617 E + 00
0.235806 E + 00
—0.308095 E + 00
0.333479 K + 00
—0.308095 E + 00
0.235805 E + 00
—0.127617 E + 00

—0.220408 K — 01

0.344239 E' + 00
—0.486827 F + 00
0.344239 E + 00
0.782669 E — 07
—0.344239 E + 00
0.486827 K + 00
—0.344238 E + 00

—0.551020 F — 02

—0.170202 E — 01
—0.130267E — 01
0,705001 E — 02
0.184226 E — 01
0.705002 £ — 02
~0.130267 £ — 01
—0.170202 F — 01

—0.244898 F — 02

—0.127306 E + 01
—0.180037 F + 01
—0.127306 E + 01
—0.964816 E — 07
0.127306 F + 01
0.180037 E + 01
0.127306 E + 01

Imaginary
0.999550 E' + 00

0.138783 E + 00
—0.256438 E + 00
0.335052 E + 00
—0.362658 F + 00
0.335052 E + 00
—0.256438 FE + 00
0.138783 F + 00

0.734363 E + 00

—0.264681 F + 00
0.374315E + 00
—0.264681 £ + 00
—0.601784 E — 07
0.264681 E + 00
—0.374315 E + 00
0.264681 E + 00

0.183591E + 00

0.469741 E + 00
0.359524 E + 00
—0.194573 E + 00
—0.508444 E + 00
—0.194573 FE + 00
0.359524 £ + 00
0.469741 E + 00

0.815959 E — 01

0.198449 F + 01
0.280649 E + 01
0.198449 F + 01
0.150399 E — 06
—0.198449 FE + 01
—0.280649 F + 01
—0.198449 FE + 01

Real

—0.153061 £ — 01

—0.322855 E' + 00
0.247103 E + 00
0.133731E + 00

—0.349456 E + 00
0.133731E + 00
0.247103 E + 00

—0.322855 E + 00

—0.979592 E — 02

—0.228487 E + 00
—0.122446 E — 07
0.228487E + 00
0.244892 F — 07
—0.228487 E + 00
—0.367337 E — 07
0.228487F + 00

—0.612245FE — 03

—0.280115 E — 01
—0.517586 E — 01
—0.676258 £ — 01
—0.731977E — 01
—0.676258 F — 01
—0.517586 E — 01
—0.280115FE — 01

Imaginary
0.509974 E + 00

0.521317E + 00
—0.398999 FE + 00
—0.215937F + 00

0.564270 F + 00
—0.215937E + 00
—0.398999 E + 00

0.521317E + 00

0.326384 FE + 00

0.650636 E + 00
0.348675 E — 07
—0.650636 £ + 00
—0.697349F — 07
0.650636 EZ + 00
0.104602 E — 06
—0.650636 F + 00

0.203990 F — 01

529895 E + 00
979119 E + 00
JA27928 E + 01
138468 FE + 01
0.127928 E + 01
0.979119 E + 00
0.529895 K + 00

[l =B = I =
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TABLE 15. IDENTIFICATION OF A SIMPLY SUPPORTED BEAM USING TWO EXCITATION VECTORS AND EXACT
RESPONSES COMPUTED FROM THE FIRST 36 MODES
(n =7, nfreq = 600, wfbegin = 0, wiend = 1.05, nfrcev = 2, nderv = 0, ntruncate = 0, ndigits = 0, nsing = 0, ngeneq = 36, ¢ = 0.03,

nrand = 0, ranpcent = 0)

INPUT MATRIX [F] TRANSPOSED

-0.100000 E + 02 0.000000 E + 00 0.000000 E + 00 0.400000 FE + 02 0.000000 £ + 00
0.000000 E' + 00 —0.100000E + 02

0.000000 £ + 00 0.100000F + 02 —0.600000 K + 02 0.000000 £ + 00 0.600000 E + 02
—0.100000 £ + 02 0.000000 E + 00

SINGULAR VALUES SING(T)

0.115942E + 04 0.183763 £+ 03 0.676513E+ 02 0.510163F + 02 0 .256999 E + 02
0.249300 £ + 02 0.235497E+02 0.207162E + 02  0.162879F + 02 0.150063 /2 + 02
0.141307E + 02 0.122596 E+ 02 0.620508F + 01  0.557900E + 01  0.488090 F + 01
0.299861 E + 01

IDENTIFIED MATRIX K

0.194154 E+ 00 —0.198739 F + 00 0.104114 EF+ 00  —0.432543F — 01 0.204214 F — 01
—-0.981493 F - 02 0.399402 FE — 02 —0.198931E + 00 0.298646 F + 00  —0.242462 F + 00

0.124891E + 00  —0.532921 F — 01 0.246617E — 01 —0.100359 f — 01 0.104582 E + 00
—0.242851 £ + 00 0.319701E + 00 —0.252778E + 00 0.129492E + 00  —0.540456 F — 01

0.211090 E — 01 —0.449151E — 01 0.126791E + 00  —0.253560 K + 00 0.324001 F + 00
—0.253560 F + 00 0.126791 K + 00  —0.449151F — 01 0.211090F — 01  —0.540456 E — 01

0.129492E + 00 —0.252778 K + 00 0.319701 E + 00  —0.242851E + 00 0.104582 E' + 00
—0.100359 ' — 01 0.246617F — 01 0.532921F — 01 0.12489117+ 00  —0.242462 K + 00

0.298646 7 + 00 —0.198931 F + 00 0.399401F — 02 —0.981492 F — 02 0.204213 F ~ 01
—0.432542 F — 01 0.104114E + 00 —0.198739 E + 00 0.194154 F + 00

<

IDENTIFIED MATRIX C

0217318 — 01  —0.133241F — 01 0.234334 E — 02 —0.491067F — 03  —0.207902 F — 03

0.923199E — 04 —0.204040E — 04 —0.137570F — 01 0.245029 K — 01  —0.150367 F — 01

0.324092E — 02 —0.992960 F — 03 0713777TE — 03 —0.403958 F — 03 0.330504 F — 02
—0.159270 £ - 01 0.267096 E — 01  —0.164758 E — 01 0.459770E — 02 —0.239643 F — 02

0.106889 K — 02 —0.272362F — 02 0.673824 F — 02 —0.193230 F — 01 0.293090 F — 01
~0.193230F — 01 0.673824 5 — 02 —0.272362F — 02 0.106889F — 02 —0.239643 F — 02

0.459770E — 02 —0.164758 E — 01 0.267096 E — 01 ~0.159270F — 01 0.330504 £ — 02
—0.403959 K — 03 0.7737179 E — 03 —0.992962 E — 03 0.324092FE — 02 —0.150367E — 01

0.245029 E — 01 —0.137570E — 01  —0.204039 F — 04 0.923197FE — 04  —0.207901 F — 03
—0.491068 F — 03 02343335 —02 —0.133241E — 01 0.217318F — 01

IDENTIFIED MATRIX (F] TRANSPOSED

—0.164802 E' — 01 0.826640 E — 02 —0.74857T4 E — 02 07231TTE ~ 01 —0.748574 E — 02
0.826640FE — 02 —0.164802 £ — 01

—0.115302 F - 01 0.368466 £ — 01  —0.890205 F — 01 0.155712 K — 08 0.890205 F — 01
~0.368466 F — 01 0.115302 K — 01
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TABLE 15. Concluded.

Real

A ~0.326715E — 01

—0.137688 E + 00
0.257350 E + 00
—0.340528 E + 00

{z}  0.374594E + 00
—0.340528 E + 00
0.257350 E + 00
—0.137688 E + 00

A —0.216203 F — 01

0.240588 F + 00
—0.340289 F + 00
0.240523 E + 00

{z}  0.554076 E — 07
—0.240523E + 00
0.340289 F + 00
—0.240588 E + 00

A —0.543022 E — 02

0.132048 F + 00
0.100591 E + 00
—0.552808 F — 01

{z} —0.143211E+ 00
—0.552808 F — 01
0.100591 E + 00
0.132048 E + 00

A —0.240710 K — 02

—0.274884 F + 01
—0.388817 F + 01
—0.274910 E + 01

{zr} —0.210089F — 06
0.274910 F + 01
0.388817 E + 01
0.274884 E + 01

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM

Imaginary
0.100052 £ + 01

0.126354 F + 00
—0.232012 E + 00
0.301044 E + 00
—0.322730 E + 00
0.301044 E + 00
—0.232012 F' + 00
0.126354 £ + 00

0.735270 E + 00

—0.319456 ' + 00
0.452064 F + 00
—0.319117E + 00
—0.744552 F — 07
0.319117 E + 00
—0.452064 E + 00
0.319456 £ + 00

0.183542 F + 00

0.659236 F + 00
0.505031 E + 00
—0.272466 F + 00
—0.713236 E + 00
—0.272466 F + 00
0.505031 £ + 00
0.659236 F + 00

0.815859 F — 01

0.209235E + 01
0.295844 E + 01
0.209214 E + 01
0.157266 E — 06
—0.209214 E + 01
—0.295844 E + 01
—0.209235E + 01

Real
—-0.151021 K =01

—0.868560 F + 00
0.662351 F + 00
0.364247E + 00

—0.934986 FE + 00
0.364247E + 00
0.662351 F + 00

—0.868560 F + 00

—0.976925E — 02

—0.152368 F + 01
0.146985 F — 03
0.152176 E + 01
0.162007 E — 06

—~0.152176 K + 01

—0.147309 E — 03
0.152368 K + 01

—~0.598416 E — 03

—0.153027 F + 00
—0.282772 E + 00
—0.369534 F' + 00
—0.400043 F + 00
—0.369534 F + 00
—~0.282772 F + 00
—0.153027E + 00

Imaginary
0.508125F + 00

0.201118 F + 00
—0.153594 E + 00
—0.839748 E — 01

0.216767F + 00
—0.839747F — 01
—0.153594 E + 00

0.201118 E + 00

0.326353E + 00

—0.126739 E + 00
0.167436 ¥ — 03
0.124938 F + 00
0.120932 F — 07

—0.124938 ' + 00

—~0.167461 E — 03
0.126739 E + 00

0.204009 E — 01

0.119589 F + 0t
0.220972 F + 01
0.288712 £ + 01
0.312498 F + 01
0.288712F + 01
0.220972FE + 01
0.119589 F + 01




TABLE 16. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS WITH
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS AND A WEIGHTING EQUAL TO THE VALUE OF
THE EXCITATION FREQUENCY
(n =17, nfreq = 600, wibegin = 0, wfend = 1.05, nfrcev = 2, nderv = 1, ntruncate = 0, ndigits = 0, nsing = 0, ngeneq = 36, { = 0.03,
nrand = 1, ranpcent = 5.0)

INPUT MATRIX [F] TRANSPOSED

—0.100000 E + 02 0.000000 E + 00 0.000000 F + 00 0.400000 F + 02 0.000000 F + 00
0.000000F + 00 —0.100000 F + 02

0.000000 F + 00 0.100000 K + 02 —0.600000 E' + 02 0.000000 E + 00 0.600000 F + 02
—0.100000 E + 02 0.000000 E + 00

SINGULAR VALUES SING(I)

0237224 E+ 02 0.174868E + 02 0.157876 £+ 02 0.153762FE + 02 0.152525FE + 02
0.139268F + 02 0.120465E + 02 0.102533FE + 02 0.558572E + 01 0.548147FE + 01
0.451168 £ + 01 0314783 E+01 0.240969 FE + 01 0.156592FE + 01  0.145036 F + 01
0.775893 E + 00

IDENTIFIED MATRIX K

0.194037E + 00 —0.197202F + 00 0.104531F + 00 —0.447668 E — 01 0.192443 F — 01
—0.966129 E — 02 0.258762F — 02 —0.199102F + 00 0.296341 E + 00 —0.242142 E + 00

0.125673E+ 00 —0.515716 E — 01 0.254169 E — 01 —0.950152 F — 02 0.104795 F + 00
—0.240188 E + 00 0.319467E + 00 —0.252661 F + 00 0.127390 £+ 00  —0.536652 F — 01

0.205805F — 01 —0.444199F — 01 0.123388E + 00 —0.251767E + 00 0.320933 F + 00
—0.250127 £ + 00 0.124360 K + 00 —0.447381FE — 01 0.211586 E — 01  —0.525785 F — 01

0.128766 £ + 00 —0.250131E + 00 0319142 FE + 00 —0.241455FE + 00 0.105488 F + 00
—0.104754 E — 01 0.244911F — 01 —0.531836 F — U1 0.122582 F + 00 —0.242522 K/ + 00

0.297521 E' + 00 —0.199418 ' + 00 0396093 E — 02 —0.948409 F — 02 0.199482 F — 01
—0.415137FE - 01 0.103638E'+ 00 —0.197591 F + 00 0.194141 E + 00

IDENTIFIED MATRIX C

0.262822 F — 01 —0.481538F — 02 0.114940 E — 01 0.840471FE — 02 0.105123 E — 01

0.104392 F — 01 0.613716 E — 02 —0.214737E — 01 0.132307E — 01 —0.268256 £ — 01
—0.721552E - 02 —0.114161E —-01 —0.108850F —01 —0.645165F — 02 0.104369 E — 01
—~0.672375 F — 02 0326974 E — 01  —0.109544 F — 01 0.820027F — 02 0.252650 £ — 02

0.574916 F — 02 —0.600837F — 02 0.532516 E — 02 —0.128883 E — 01 0.314542 F — 01
—0.929245 F — 02 0.119797E — 01 —0.241120F — 02 0.247068 K — 02 —0.447280 E' — 02
—0.219335F — 02 —0.267557TF - 01 0.134074 E — 01  —0.286496 F — 01 —0.227531F — 02
—0.223546 E — 04 0292216 E — 02 0.520518 F — 02 0.134540 F — 01 —0.165027F — 02

0.391381E — 01 —0.558495F —02 —~0.594804F —03 —0.124381E—02 —0.352173E - 02
—0.646521E — 02 —0.474596 F — 02 —0.220491 F — 01 0.166587 FE — 01

IDENTIFIED MATRIX [F] TRANSPOSED

—0.166417 E — 01 0.807763FE — 02 —0.626105F — 02 0.685902F — 01 —0.669438 K — 02
0.841053 F — 02 —0.168291 F — 01

—0.127982 K — 01 0.389780 K — 01 —0.897487FE — 01 0.557997F — 04 0.900097 F — 01
—0.387366 £ — 01 0.129581F — 01
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TABLE 16. Concluded.

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM

A

{z}

{z}

{z}

Real
—0.313972 F - 01

0.146912 FE' + 00
—0.273202 FE + 00
0.359497 F + 00
~0.389716 E' + 00
0.360092 FE + 00
—0.273526 E + 00
0.146199 E + 00

—0.222915 F — 01

—0.189441 F + 00
0.268932 F + 00
—0.189100 FE + 00
0.231661 F — 03
0.188239 F + 00
—0.266216 E + 00
0.188359 F + 00

—0.556408 K — 02

0.205240 F + 01
0.158480 F + 01
—0.863179 E + 00
—-0.221694 E + 01
—0.850616 E + 00
0.157362 E' + 01
0.206999 F + 01

—0.243812 F — 02

0.378141 F + 01
0.543130 F + 01
0.377352 E + 01
—0.829433 F — 02
—0.383286 F + 01
—0.546253 F + 01
—0.386050 F + 01

Imaginary
0.997180 F + 00

—0.118723 E + 00
0.217969 E + 00
—0.282088 E + 00
0.301566 E + 00
—0.279645 E + 00
0.215638 E + 00
—0.116340 F/ + 00

0.734884 F + 00

0.335951 F + 00
—0.471846 FE + 00
0.334469 F + 00
—0.198012 F — 03
—0.335391 F + 00
0.472775 E + 00
—0.333609 F + 00

0.184213 FE + 00

—0.968370 F + 00
—0.732183 E + 00
0.408463 F + 00
0.105813 E + 01
0.406636 E' + 00
—0.739520 E + 00
—0.965541 E + 00

0.826824 F — 01

-0.124705 F + 01
—0.182984 ' + 01
-0.130637 E + 01
~0.287140 F — 01
0.128532 F + 01
0.190522 F + 01
0.133358 E + 01

Real
—0.132651F — 01

0.790101F + 00
—0.614467F + 00
—0.327083 FE + 00

0.851886 F + 00
—0.340308 E + 00
—0.595234 F + 00

0.785755 E + 00

—0.972426 E — 02

0.116336 E + 01
—0.771226 E — 03
~0.115978 E + 01

0.937335 E — 03

0.117194 E + 01

0.358304 F — 03
—-0.117755 E + 01

—0.175400 E — 02

—-0.516602 FE + 01
—0.943054 FE + 01
—0.123650 F + 02
—0.134179E + 02
—0.123457E + 02
—-0.961499 F + 01
—0.519187F + 01

Imaginary
0.507559 E + 00

—0.328308 F' + 00
0.258013 F + 00
0.133653 F + 00

—0.359346 E + 00
0.134216 E + 00
0.253976 E + 00

—0.328943 F + 00

0.326416 F + 00

—0.670824 F' + 00
—0.302198 F — 04
0.669000 F' + 00
—0.977512 E — 03
—0.675492 E + 00
0.161411 F — 02
0.676923 F + 00

0.217996 E — 01

0.443004 E + 01
0.792588 E + 01
0.104736 E + 02
0.113346 E + 02
0.103220 F + 02
0.807067 FE + 01
0.431724 E + 01
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TABLE 17. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS WITH
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS AND A WEIGHTING EQUAL TO THE EXCITATION
FREQUENCY (FREQC = 0.143)

(n=7, nfreq = 600, wibegin = 0, wfend = 1.05, nfrcev = 2, slope = 1.0, freqc = 0.143, ntruncate = 0, ndigits = 0, nsing = 0, ngeneq = 36,
¢ =0.03, nrand = 1, ranpcent = 5.0)

INPUT MATRIX [F] TRANSPOSED

—0.100000 F + 02 0.000000 F + 00 0.000000 K + 00 0.400000 £ + 02 0.000000 K + 00
0.000000F + 00 —0.100000E + 02

0.000000 F + 00 0.100000 £ + 02 —0.600000 £ + 02 0.000000 £ + 00 0.600000 F + 02
—0.100000 E + 02 0.000000 F + 00

SINGULAR VALUES SING()

0.165538E + 03 0.265154 K +02 0.175181E+ 02 0.157818E+ 02 0.154157FE + 02
0.143656 E+ 02 0.123272E + 02 0.102826 B+ 02 0.572261E+ 01  0.558805E + 01
0.460589 F + 01  0.341661 K + 01  0.339965E + 01  0.241690F + 01 0.225009 E + 01
0.156487F + 01

IDENTIFIED MATRIX K

0.191268 F + 00 —0.189166 F + 00 0.949225 F — 01  —0.366809 £ — 01 0.123112 F — 01
—0.423379E - 02 —0.807628 K — 03 —0.204011F + 00 0.286695F + 00  —0.214866 E + 00

0.939855E — 01 —0.301565F — 01 0.209433E — 01  —0.124693 F — 01 0.123832 FE + 00
—0.237463 F + 00 0.276081F + 00  —0.193518 F + 00 0.911082 E — 01 —0.561219 FE — 01

0.369615FE — 01  —0.682306 E — 01 0.126117E + 00 —0.208132 FE + 00 0.256750 E + 00
—0.210622 E + 00 0.129428FE + 00 —0.664270 E — 01 0.361135F — 01 —0.527017E — 01

0.976965E — 01  —0.205038 F + 00 0.287898 K + 00  —0.240579 E' + 00 0.119472 F + 00
—0.143292 F — 01 0.202502 F - 01 —0.363314 F — 01 0.100892 E+ 00  —0.223970E + 00

0.291086 K+ 00 —0.203114E + 00 0.353561F - 02 —0.555050 F — 02 0.129156 E — 01
—0.339695 F — 01 0.957134E — 01 —0.192589 E + 00 0.193633 F + 00

IDENTIFIED MATRIX C

0.325611 F — 01 0.890313 F — 02 0.218270 F — 01 0.187690 F — 01 0.187896 F — 01

0.228144 F — 01 0.121872E — 01 —0.318580 E — 01 —0.998016 £ — 02 —0.388969 F — 01
—0.176628 K — 01  —0.196196F — 01 —0.317158E —01 —0.166098 F — 01 0.208421 F — 01

0.173162FE — 01 0.378228 K — 01 —0.100135E —01 0.945393 F — 02 0.244870 F — 01

0.162525F — 01 —0.123922E - 01 —0.114572E—01 ~—0.985126 E — 02 0.388534 F — 01
—0.512958 5 — 02 —0.530941F —02 —0.100132E —01 —0.270362F — 03 —0.463345E — 02
~0.177505E —~ 01 —0.441811E — 01 —0.364018E — 03 —0.258721E —01 —0.299473F — 2

0.676093 ' — 02 0.112436 £ — 01 0.227179 F — 01 0.307692 E — 01 0.133590 F — 01

0.441799EF — 01  —0.727912E — 03 —0.404830 5 — 02 —~0.532077E —02 —0.116405E — 01
—0.142738 5 — 01  —0.119017F — 01 —0.248995F — 01 0.138725 F — 01

IDENTIFIED MATRIX [F] TRANSPOSED

—0.141370 F — 01 0.276009 E — 02 0.497559 E — 03 0.622341E — 01  —0.126673F — 02
0.438555 5 — 02 —0.147322FE — 01

—0.133482 F — 01 0.401532E — 01 —0.911538F — 01 0.865668 E — 03 0.900501 F — 01
—0.390701 K — 01 0.131305 £ — 01
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TABLE 17. Concluded.

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM

A

{z}

{z}

{«}

Real
—0.226244 F — 01

0.104314 E' + 00
—0.189204 ' + 00
0.250850 K + 00
—0.284159 F' + 00
0.276029 K + 00
—0.217993 F + 00
0.119389 F + 00

—0.223600 E — 01

—0.296017 K — 01
0.439583 F' — 01
—0.298898 K — 01
0.208935 F — 03
0.286879 E — 01
—0.412769 E — 01
0.296058 E — 01

—0.596619 FF — 02

—0.13611S E + 01
—0.106456 E + 01
0.612368 K + 00
0.144026 E + 01
0.567736 E + 00
—0.105771 F + 01
—0.136202 F + 01

—0.236946 F — 02

—0.810124 E + 00
—0.118387E + 01
—0.829845 E' + 00
—0.426308 £ — 02
0.839828 K + 00
0.122304 £ + 01
0.855094 E + 00

Imaginary
0.941635 E + 00

—0.161006 E + 00
0.288699 F + 00
—0.372212 E + 00
0.407824 F + 00
—0.390375 F + 00
0.308782 F + 00
—0.169492 E + 00

0.730970 F + 00

0.357516 E' + 00
—~0.501931E + 00
0.355523 E + 00
—0.436421F — 02
—0.347741E + 00
0.494417F + 00
—0.350852 K + 00

0.182808 E + 00

0.124983 F + 01
0.975268 ' + 00
—0.500339 K + 00
—U.141106 £ + 01
—0.539516 £ + 00
0.997902 E + 00
0.126901 F + 01

0.817272 F — 01

—0.171025 E + 01
—0.246641 FE + 01
—0.168920 E + 01
0.2383807F — 02
0.171779 E + 01
0.246024 FE + 01
0.173676 E + 01

Real
—0.145619 F — 01

0.360523 F + 00
—0.270052 E + 00
~0.207899 FE + 00

0.514694 E + 00
—0.273547 E + 00
—0.281785 E' + 00

0.444747 E + 00

—0.995764 £ — 02

—0.107296 £ + 01
—0.954964 £ — 02
0.108986 F + 01
—0.147426 E — 01
—0.108239 F + 01
0.987291FE — 02
0.107716 E + 01

—0.633177E — 03

—0.399930 F + 01
—0.743550 E + 01
—0.971781 E + 01
~0.105472 F + 02
—0.967205 E + 01
—0.737276 E + 01
~0.397045 E + 01

0

(=l el el Nl

0

Imaginary

463997 ' + 00

457260 E + 00
343298 E + 00
275907 E' + 00
689617 E + 00
365992 F + 00
366737 E + 00
587045 E + 00

324418 E + 00

728541 E + 00

990619 E — 02
746506 F + 00
139928 E — 01
136158 E + 00
108948 F — 01
7128473 E + 00
204200 £ — 01

471547 F + 01
840955 F + 01
AMT727E + 02
A21141F + 02
A11150 F + 02
878663 F + 01
472814 FE + 01
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TABLE 18. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS WITH
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS, A WEIGHTING EQUAL TO THE EXCITATION
FREQUENCY, AND 14 SUBRANGES OF EXCITATION FREQUENCIES

(n=7, nranges = 14, nfreq = 6, 25, 6, 25, 6, 25, 6, 25, 6, 25, 6, 25, 6, 25, 0,0, 0, 0,0, 0,0, 0, 0,0, 0, 0, 0, 0, 0, 0, wibegin = 0,

1.76 E — 002,232 E — 002,722 E — 002,912 E — 002, 0.161, 0.205, 0.286, 0.364, 0.44, 0.56, 0.644, 0.82, 0.88, 0, 0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0, wiend =1.76 E — 002, 2.32 E — 002, 7.22 E — 002,9.12 E — 002, 0.161, 0.205, 0.286, 0.364, 0.44, 0.56,
0.644,0.82,0.88,1.12,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, nfreev = 2, slope = 1.0, freqc = 0, ntruncate = 0, ndigits = 0, nsing = 0,
ngeneq = 36, { =0.03, nrand = 1, ranpcent = 5.0)

INPUT MATRIX [F] TRANSPOSED

0.000000 E' + 00 0.000000 £ + 00 0.000000 E + 00 0.500000 £ + 02 0.000000 E + 00
0.000000 E + 00 0.000000 E + 00

0.000000 E + 00 0.100000F + 02  —0.600000 E + 02 0.000000 FE + 00 0.600000 ' + 02
—0.100000 F + 02 0.000000 E + 00

SINGULAR VALUES SING()

0.154728 E + 01l 0.763904 E + 00 0.697949E + 00 0.672401F + 00  0.641849 F + 00
0.596769E'+ 00  0.490812E + 00 0.444835FE + 00 0.291199E + 00  0.235478 E + 00
0.207062E + 00 0.177566 F + 00 0.146209E + 00 0.992819E — 01  0.614743 E — 01
0.476817FE — 01

IDENTIFIED MATRIX K

0.193354 E+ 00 —0.197943E + 00 0.101628 £ + 00  —0.406954 E — 01 0.177047 F — 01
~0.945415FE — 02 0.357336 £ — 02 —0.197432 E + 00 0.298574 E+ 00 —0.240295E + 00

0.122998 E + 00 —0.500582 FE — 01 0.248456 E — 01  —0.917192E — 02 0.102093 E + 00
—0.240734 E + 00 0.314237TE + 00 —0.247315E + 00 0.123093E + 00 —0.532834 F — 01

0.196581E — 01  —0.412701E — 01 0.122582 E + 00 —0.247054 E + 00 0.317501 F + 00
—0.245141 FE + 00 0.122862FE + 00 —0.418250 E — 01 0.191931E — 01 —0.516991E — 01

0.125272 E + 00 —0.248485 F + 00 0314779 E + 00 —0.241140F + 00 0.103661 E + 00
—0.981144 F — 02 0.246518 E — 01 —0.522248 F — 01 0.124163E + 00  —0.240821 FE + 00

0.298263FE + 00  —0.199496 E + 00 0.372971E — 02 —0.916989 F — 02 0.183821 F ~ 01
—0.412183 F — 01 0.101132E + 00  —0.196322 F + 00 0.193769 E + 00

IDENTIFIED MATRIX C

0.180176 E — 01 —0.206961E —01 —0.170855F — 02 —0.432949 FE — 02 —0.144930 F — 02

0.214452 E — 02 0.294256 E — 02 —0.683449 F — 02 0.338379 E — 01 —0.987023F — 02

0.102743 E — 01 0.187719E — 02 0.976027FE — 03 —0.433979F — 02 —0.342985F — 02
—0.258424 E — 01 0.180825F — 01  —0.210031E -~ 01 —0.262011E —02 —0.313762F — 02

0.188661F — 02 0.495965 FE — 02 0.181619E — 01  —0.879909 E — 02 0.366078 E — 01
—0.680676 E — 02 0.144186 E — 01 0.140785FE — 04 —0.507772E — 02 —0.142892FE — 01
—0.155315E — 02 —0.254373E — 01 0.172355E — 01  —0.260363E — 01 —0.115776 E — 02

0.803895 F — 02 0.976601 E — 02 0.637976 £ — 02 0.114627E — 01 —0.593177E — 02

0.369223E ~ 01 —0.850457F — 02 —0.534445E — 02 —0.759989F — 02 —0 477437 E — 02
~0.509375FE - 02 —0.122459E — 02 —0.196320F — 01 0.184871E — 01

IDENTIFIED MATRIX {F] TRANSPOSED

—0.149776 E — 02 0.312827FE — 02 —0.231955F — 02 0.803777E — 01  —0.323477F — 02
0.330069E — 02 —0.161662E — 02

—0.133848 F — 01 0.393812E — 01  —0.900116 E — 01 —0.439619 F — 03 0.908613 F — 01
—0.398884 F — 01 0.137242 F — 01
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TABLE 18. Concluded.

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM

A

{=}

{z}

{z}

{z}

Real

—0.333129 F — 01

0.137753 E + 00
—0.260102 F + 00
0.336037F + 00
—0.368147FE + 00
0.343169 E + 00
—0.263621 E + 00
0.139747FE + 00

—0.224623 F — 01

0.681439 F — 01
—0.995215F — 01
0.678031 E — 01
0.229698 E — 03
—0.697351E — 01
0.924596 E — 01
—0.660361 E — 01

—0.526201 FE — 02

0.211342F + 01
0.160245 F + 01
—0.879670E + 00
—0.230402 F + 01
—0.880857 F + 00
0.162417F + 01
0.209181 E + 01

—0.258316 E — 02

0.418531F + 01
0.592605 F + 01
0.419057F + 01
0.409464 E — 01
—0.416480 F + 01
—0.590389 F' + 01
—0.414171E + 01

Imaginary
0.990801 E + 00

—0.126715E + 00
0.235549 F + 00
—0.306315 E + 00
0.325396 ' + 00
—0.303283 E + 00
0.237781 E + 00
—0.126105 F + 00

0.734756 E + 00

0.354674 E + 00
—0.501762 F + 00
0.353226 E + 00
—0.374665 E — 03
—0.355207 E + 00
0.502190 F + 00
—0.352054 E' + 00

0.184412 E + 00

0.916286 F + 00
0.705553 E + 00
—0.371081 E + 00
—0.100166 FE + 01
—0.377411 E + 00
0.701211 E + 00
0.929200 E + 00

0.823099 F — 01

0.321875 E + 00
0.384253 E + 00
0.223368 £ + 00
—0.127519 E + 00
—0.435140 F + 00
—0.506359 E' + 00
—0.324332 F + 00

Real
—0.143679 F — 01

0.820647 F — 01
—0.648627F — 01
—0.333049 F — 01

0.906997 E — 01
—0.330466 E — 01
—0.646619 E — 01

0.825250 F — 01

—0.956934 F — 02

—0.152734 E + 01
0.333349 E — 03
0.151766 E + 01
0.787200 F — 03

—0.153013 K + 01
0.177169 E — 02
0.152831E + 01

—0.203771E — 02

—0.133305 E + 01
—0.243086 E' + 01

0321803 1 01
—0.340816 E + 01
—0.316847F + 01
—0.241293F + 01
—0.132634 F + 01

Imaginary
0.508946 E + 00

0.475874 F + 00
—0.358249 F + 00
—0.198755 FE + 00

0.518059 F + 00
—0.199993 E + 00
—0.363117E + 00

0.476766 E + 00

0.326546 E + 00

—0.106448 E' + 00
—0.445495 F — 03
0.851435E — 01
0.681113 E — 03
—0.977051 E — 01
—0.24209 F — 02
0.883642 E — 01

0.212589 F — 01

0.315479FE + 01
0.581827 F + 01
0.774930 7 + 01
0.829124 E + 01
0.768464 E + 01
0.589532 F + 01
0.320070E + 01
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TABLE 19. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS AND
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS, WITH A WEIGHTING PROPORTIONAL TO THE
EXCITATION FREQUENCY (FREQC = 0.04), 14 FREQUENCY SUBRANGES, AND 14 DISPLACEMENT POINTS

(n=7, nranges = 14, nfreq = 6, 25, 6, 25, 6, 25, 6, 25, 6, 25, 6, 25, 6, 25,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0, wibegin = 0,
176 E— 002,232 F — 002,722 K — 002,9.12 E — 002, 0.161, 0.205, 0.286, 0.364, 0.44, 0.56, 0.644, 0.82, 0.88, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,wlend=1.76 K — 002,2.32 E — 002,7.22 E — 002,9.12 E — 002, 0.161, 0.205, 0.286, 0.364, 0.44, 0.56,
0.644,0.82,0.88,1.12,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0, 0, 0, nfrcev = 2, slope = 1.0, freqc =4 .0 E — 002, ntruncate = 0, ndigits = 0,
nsing = 0, ngeneq = 36, ¢ =0.03, nrand = 1, ranpcent = 5.0)

INPUT MATRIX [F] TRANSPOSED

0.000000 E + 00
0.000000 E + 00

0.000000 F + 00
0.000000 FE + 00

0.000000 F + 00 0.500000 F + 02 0.000000 E + 00

0.000000 E' + 00
—0.100000 F + 02

0.100000F + 02
0.000000 F + 00

—0.600000 F + 02 0.000000 F + 00 0.600000 E + 02

SINGULAR VALUES SING(I)

0.150828 FE + 01
0.312184 E + 00
0.103657 F + 00
0.307532 F — 01

0.693129 F + 00
0.246224 E + 00
0.905946 E — 01

0.687091F + 00
0.227471E + 00
0.742751 FE — 01

0.343049 F + 00
0.146511 F + 00
0.502146 F — 01

0.321284 £ + 00
0.117884 E + 00
0.346260 F — 01

IDENTIFIED MATRIX K

0.417696 E — 03
—0.948580 K — 03
—0.246370 K — 04

0.327139 E — 04
—0.975619 E — 04

0.185181 F — 03

0.267418FE — 04
—0.392488 £ — 03

0.538941FE + 00

0.130944 E — 02

IDENTIFIED MATRIX C

0.102570 E — 02
0.216651 E — 03
0.185366 £ — 03
—0.334275 E — 04
—0.688270 £ — 03
—0.661696 £ — 03
—0.212517F - 02
0.585366 E — 02
0.442020 £ — 01
0.437421E — 03

—0.376368 E — 04
—0.726364 £ — 03
0.118328 K — 03
0.336914 £ — 01
0.198869 F — 03
0.718313 K — 03
—0.319997 E — 03
0.637571E — 03
0.270588 F — 03
0.243329 F — 02

—0.932000 F - 03
0.104659 F — 02
—0.980276 £ — 04
0.108109 F — 01
0.356010 F — 02
—0.698401 F — 03
—0.347155 E — 05
0.746605 F — 02
0.299515F - 03
—0.441657TF — 02

IDENTIFIED MATRIX [F] TRANSPOSED

0.210166 £ — 01
0.103170 £ — 03

0.728854 F — 04
—0.549493 F — 01

—0.182372 E — 03
—0.205939 F — 01

—0.172108 K — 01
—0.268878 K — 03

0.577119 E — 04
—0.293144 F — 05
0 836068 K — 03
—0.994578 K — 04
0.1933719 E — 04
—0.118919 FE — 03
0.258991F + 00
0.452296 K — 03
0.443842 E — 03
—0.348219F — 03

0.235836 F — 03

—0.469890 F — 04
0.156793 F — 04
0.736009 E — 05

0.926320F — 03
0.140366 F — 02
0311698 F — 01
0.430854 F — 03
0.596656 ¥ — 01
0.974302 F — 03

—0.210425 F — 01

0.151139 E — 03

~0.116407 E — 03
0.673807F — 02
0281029 FE — 07

—0.210542 F — 04

—0.109194 FE — 03

—0.661482 F — 04
0.197241E — 03

—~0.245112 E — 03
0.745831 E — 03
0.986410 E + 00

—0.341272 E - 03
0.491991 E — 02
0.274113 E — 02

—0.149580 F — 03
0.981349 F — 04

—0.740172 E — 02

~0.192195F — 03
0.767516 E — 03
0.207848 K — 02
0.584156 F — 01

—0.235332 £ — 03

0.389858 £ — 01

0.309257FK — 03
0.165086 £ — 04
—0 . STARORE — 04
0.209427F — 02
0.106530 E + 00
—0.384768 £ — 03
0.145409 E — 02
—0.642817E — 03
0.131058 F — 02

—0.200306 F — 03
0.627058 F — 03
0.547004 E — 03

—0.283810F —~ 03
0.195570 E — 01

—0.246667 E — 02
0.636600 E — 03
0.252518 K — 03
0.126733 F — 01

0.209816 K ~ 01

0.313262 K — 04




TABLE 19. Concluded.

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM

A

Real
—0.291867F — 01

—0.130905E — 02
—0.817368 £ — 04
0.473325F — 03
—0.130569 F — 02
0.728860 K — 03
—0.167267E — 03
0.662414 £ + 00

—0.221033 F — 01

0.164676 E — 02
—0.167904 E — 02
—0.410293 F — 02
—0.978995 F — 03
—0.429218 K — 03
—0.108910 K + 01

0.115579 K — 03

—0.545432 F — 03

—0.363861F + 00
0.693616 FF — 03
—0.103411E - 02
—0.167317E — 03
0.647801 K — 03
—0.543437FE - 03

—0.540642 F — 02

—0.134446 E — 02
—0.158621F — 02
—0.500162 E + 00
—0.654223 E — 03
—0.515363 F — 03

0.489200 K — 03

0.147443 F — 02

Imaginary
0.992726 E + 00

0.181201F — 03
0.400412 F — 02
—0.561057FE — 03
0.962781F — 03
0.208503 F — 02
0.877872 FE — 03
0.772220 F + 00

0.733795S E + 00

—0.156350 K — 02
0.108943 F — 02
0.333366 E — 02
0.243450F — 02
0.103778 E — 02
0.644654 E' + 00
0.217372 E - 02

0.204317F — 01

—0.124249 F + 01
—~0.917895 F — 03
—0.197433 F 02

0.256213 F — 02
—0.515616 K — 03
—0.828621 E - 03

0.183466 E + 00

—0.155821E — 04
—0.181347FE — 02
0.332308 K + 00
0.655906 ' — 03
—0.932810F — 03
—0.215634 E — 03
0.792550 £ — 03

Real
—0.155838 F — 01

—0.196555F — 02
—0.684683 E — 03

0.288623 K — 03
—0.118525 £ — 02
—0.186203 K + 01
—0.402491 F — 02

0.490241 FE — 02

—0977345F - 02

0.369938 K — 02
0.616446 £ ~ 03
0.404650 ' — 02
—0.302620 F + 01
—0.640637F — 02
~0.154629 E — 02
0.460804 F — 02

—0.245120 F — 02

0.905285E — 02
—0.698376 E + 00
0.724993 F — 03
0.443937F — 03
—0.140696 F — 02
0.131706 £ — 02

0.628536 K — 03

Imaginary
0.508665 E' + 00

0.143550 ' — 02
0.578240 K — 03
0.590042 E — 03
0.478200 F ~ 02
0.463903 E + 00
0.206364 F — 02
—0.736849 F — 02

0.326246 E + 00

0.260896 K — 02
—0.189395 F — 02
—0.673022 FE — 03

0.343042 F + 00

0.925718 E — 03

0.196912 F — 02
~0.194712 F — 03

0.820300F — 01

0.560156 £ — 02
0.428296 E + 00
—0.628659 F — 03
0.412003 K — 03
0.120021F — 03
0.294413 F - 03

~0.253410 F — 03

37



m FI'H: Me
m cMme m
me ¥y Me
m m
Y Ya
T cI"Iy‘ clil y5 T

| 1 | | | i
Figure 1. Description of the dynamic system used as
an example.
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Figure 2. Three-view drawing of drone rescarch vehi-
cle. All linear dimensions are in inches.
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Figure 3. Root locus plot of “exact” system.
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Figure 4. Drone for acrodynamic and structural testing
(DAST) — results obtained using “exact” responscs
for Q = 0 and Q = 150 1b/fi?.
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Figure 5. DAST—results obtained using “exact” re-
sponses for Q = 150 and Q = 250 1b/fi2.
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Figure 6. DAST—results obtained using responses
with 5 percent random errors, for @ = 0 and Q =
150 Ib/fi%.
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Figure 7. DAST—results obtained using responses with 3 percent random errors, for @ = 150 and Q =

250 1b/ft?.
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Figure 8. Plan view of YF-17 flutter model.
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Figure 9. YF-17 aircrafti—"exact” results.
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Figure 10. YF-17 aircraft—rcsults obtaincd using “ex-
act” responses for @ = 0 and Q = 20 Ib/ft®.
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Figure 11. YF-17 aircraft—results obtained using “ex-

act” responscs for Q = 20 and Q = 35 1b/ft?.
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Figure 12. YF-17 aircraft—results obtained using re-
sponses contaminated with 5 percent random errors at
Q=0 and Q = 20 b/ft%.
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